Ethical dilemma: Should we get rid of mosquitoes?
Talya Hackett,  TED-Ed,  2023.
Engineered Antiviral Sensor Targets Infected Mosquitoes
E. Dalla Benetta, A. J. Lopez-Denman, H.-H. Li, R. A. Masri, D. J. Brogan, M. Bui, T. Yang, M. Li, M. Dunn, M. J. Klein, S. Jackson, K. Catalan, K. R. Blasdell, P. Tng, I. Antoshechkin, L. S. Alphey, P. N. Paradkar and O. Akbari,  bioRxiv,  2023.01.27.525922. 2023.
Impact of randomised wmel Wolbachia deployments on notified dengue cases and insecticide fogging for dengue control in Yogyakarta City
C. Indriani, S. K. Tanamas, U. Khasanah, M. R. Ansari, Rubangi, W. Tantowijoyo, R. A. Ahmad, S. M. Dufault, N. P. Jewell, A. Utarini, C. P. Simmons and K. L. Anders,  Glob Health Action,  16:2166650. 2023.
Control of Aedes mosquito populations using recombinant microalgae expressing short hairpin RNAs and their effect on plankton
X. Fei, S. Xiao, X. Huang, Z. Li, X. Li, C. He, Y. Li, X. Zhang and X. Deng,  PLOS Neglected Tropical Diseases,  17:e0011109. 2023.
Assessing potential hybridization between a hypothetical gene drive-modified Drosophila suzukii and nontarget Drosophila species
S. Wolf, J. Collatz, J. Enkerli, F. Widmer and J. Romeis,  Risk Analysis,  2023.
Harnessing Wolbachia cytoplasmic incompatibility alleles for confined gene drive: A modeling study
J. Li and J. Champer,  PLOS Genetics,  19:e1010591. 2023.
Complicated expansion trajectories of insertion sequences and potential association with horizontal transfer of Wolbachia DNA
Y. H. Miao, D. W. Huang and J. H. Xiao,  Zoological Research,  44:273-275. 2023.
Closing the gap to effective gene drive in Aedes aegypti by exploiting germline regulatory elements
M. A. E. Anderson, E. Gonzalez, J. X. D. Ang, L. Shackleford, K. Nevard, S. A. N. Verkuijl, M. P. Edgington, T. Harvey-Samuel and L. Alphey,  Nature Communications,  14:338. 2023.
Joint FAO/IAEA Coordinated Research Project on Mosquito Handling, Transport, Release and Male Trapping Methods in Support of SIT Application to Control Mosquitoes
M. Gómez, B. J. Johnson, H. C. Bossin and R. Argilés-Herrero,  Insects,  14. 2023.
Wolbachia Promotes Its Own Uptake by Host Cells
L. B. Nevalainen, E. M. Layton and I. L. G. Newton,  Infection and Immunity,  e0055722. 2023.
Wolbachia RNase HI contributes to virus blocking in the mosquito Aedes aegypti
M. Hussain, G. Zhang, M. Leitner, L. M. Hedges and S. Asgari,  iScience,  26:105836. 2023.
Engineered symbiotic bacteria interfering <em>Nosema</em> redox system inhibit microsporidia parasitism in honeybees
H. Lang, H. Wang, H. Wang, X. Xie, X. Hu, X. Zhang and H. Zheng,  bioRxiv,  2023.01.13.524015. 2023.
Dynamics of an impulsive reaction-diffusion mosquitoes model with multiple control measures
Y. Li, H. Zhao and K. Wang,  Mathematical Biosciences and Engineering,  20:775-806. 2023.
Bypassing Mendel’s First Law: Transmission Ratio Distortion in Mammals
G. Friocourt, A. Perrin, P. A. Saunders, E. Nikalayevich, C. Voisset, C. Coutton, G. Martinez and F. Morel,  International Journal Molecular Sciences,  24. 2023.
Gene Drives Could Fight Malaria and Other Global Killers but Might Have Unintended Consequences
M. Cobb,  Scientific American,  2023.
Genetic conversion of a split-drive into a full-drive element
G. Terradas, J. B. Bennett, Z. Li, J. M. Marshall and E. Bier,  Nature Communications,  14:191. 2023.
Researchers Create New System for Safer Gene-Drive Testing and Development
M. Aguilera,  UC San Diego Today,  2023.
Environmental, Socio-economic, and Health Impact Assessment (ESHIA) for Gene Drive Organisms
isaaa Inc. and Outreach Network for Gene Drive Research,  ISAAA,  2023.
Single-cell transcriptome sequencing reveals Wolbachia-mediated modification in early stages of Drosophila spermatogenesis
W. Dou, B. Sun, Y. Miao, D. Huang and J. Xiao,  Proceedings of the Royal Society B: Biological Sciences,  290:20221963. 2023.
Single-cell transcriptome sequencing reveals Wolbachia-mediated modification in early stages of Drosophila spermatogenesis
W. Dou, B. Sun, Y. Miao, D. Huang and J. Xiao,  Proceedings of the Royal Society B: Biological Sciences,  290:20221963. 2023.
Heterogeneous distribution of sex ratio distorters in natural populations of the isopod Armadillidium vulgare
S. Durand, B. Lheraud, I. Giraud, N. Bech, F. Grandjean, T. Rigaud, J. Peccoud and R. Cordaux,  Biology Letters,  19:20220457. 2023.
Effects of gamma radiation on the vector competence of Aedes aegypti (diptera: Culicidae) to transmit Zika virus
E. B. da Silva, C. M. de Mendonça, D. R. D. Guedes, M. H. S. Paiva, J. d. A. Mendonça, E. S. F. Dias, S. G. L. Florêncio, A. Amaral, A. M. Netto, C. F. J. A. Lopes and M. A. V. de Melo-Santos,  Acta Tropica,  239:106831. 2023.
Trust in science and scientists: Effects of social attitudes and motivations on views regarding climate change, vaccines and gene drive technology
H. G. W. Dixson, A. F. Komugabe-Dixson, F. Medvecky, J. Balanovic, H. Thygesen and E. A. MacDonald,  Journal of Trust Research,  2023.
Sterility of Aedes albopictus by X-ray Irradiation as an Alternative to γ-ray Irradiation for the Sterile Insect Technique
L.-M. Wang, N. Li, C.-P. Ren, Z.-Y. Peng, H.-Z. Lu, D. Li, X.-Y. Wu, Z.-X. Zhou, J.-Y. Deng, Z.-H. Zheng, R.-Q. Wang, Y.-N. Du, D.-Q. Wang and S.-Q. Deng,  Pathogens,  12. 2023.
Assessment of distant-site rescue elements for CRISPR toxin-antidote gene drives
J. Chen, X. Xu and J. Champer,  bioRxiv,  2023.01.06.522951. 2023.
CRISPR Gene Drives: A Weapon of Mass Destruction?
J. Ng,  Medium,  2022.
Biotech company released 2.4 billions GM Mosquitoes in two parts of the U.S
C. Victorial,  NEWSBREAK,  2022.
Gene drive designs for efficient and localisable population suppression using Y-linked editors
R. Geci, K. Willis and A. Burt,  PLOS Genetics,  18:e1010550. 2022.
Mating Competitiveness of Irradiated Lobesia botrana (Lepidoptera: Tortricidae) in Male-Only and Both Sex Release Strategies under Laboratory Cage Conditions
G. Saour, A. Hashem and I. Jassem,  Insects,  14. 2022.
Use of Insect Promoters in Genetic Engineering to Control Mosquito-Borne Diseases
V. Bottino-Rojas and A. A. James,  Biomolecules,  13. 2022.
Genes drive organisms and slippery slopes
D. B. Resnik, R. F. Medina, F. Gould, G. Church and J. Kuzma,  Pathog Glob Health,  2022.
P-element invasions in Drosophila erecta; shed light on the establishment of host control over a transposable element
D. Selvaraju, F. Wierzbicki and R. Kofler,  bioRxiv,  2022.12.22.521571. 2022.
How Selfish Genes Succeed: Critical Insights Uncovered About Dangerous DNA
STOWERS INSTITUTE FOR MEDICAL RESEARCH,  SciTechDaily,  2022.
Genetically modified mosquitoes … could CRISPR gene editing end malaria?
D. Wells,  SelectScience,  2022.
Gene drive-mediated population elimination for biodiversity conservation. When you come to a fork in the road, take it
B. A. Hay and M. Guo,  Proceedings of the National Academy of Sciences,  119:e2218020119. 2022.
Gene editing and agrifood systems
FAO,  FAO,  2022.
A Natural Fungal Gene Drive Enacts Killing via DNA Disruption
A. S. Urquhart and D. M. Gardiner,  mBio,  e0317322. 2022.
Wolbachia endosymbionts manipulate GSC self-renewal and differentiation to enhance host fertility
S. L. Russell, J. R. Castillo and W. T. Sullivan,  bioRxiv,  2022.12.15.520626. 2022.
Assessing the efficacy of male Wolbachia-infected mosquito deployments to reduce dengue incidence in Singapore: study protocol for a cluster-randomized controlled trial
J. Ong, S. H. Ho, S. X. H. Soh, Y. Wong, Y. Ng, K. Vasquez, Y. L. Lai, Y. X. Setoh, C. S. Chong, V. Lee, J. C. C. Wong, C. H. Tan, S. Sim, L. C. Ng and J. T. Lim,  Trials,  23:1023. 2022.
Exploring the value of a global gene drive project registry
R. I. Taitingfong, C. Triplett, V. N. Vásquez, R. M. Rajagopalan, R. Raban, A. Roberts, G. Terradas, B. Baumgartner, C. Emerson, F. Gould, F. Okumu, C. E. Schairer, H. C. Bossin, L. Buchman, K. J. Campbell, A. Clark, J. Delborne, K. Esvelt, J. Fisher, R.,  Nature Biotechnology,  2022.
Performance characteristics allow for confinement of a CRISPR toxin-antidote gene drive designed for population suppression
S. Zhang and J. Champer,  bioRxiv,  2022.12.13.520356. 2022.
Cell-based analysis reveals that sex-determining gene signals in Ostrinia are pivotally changed by male-killing Wolbachia
B. Herran, T. N. Sugimoto, K. Watanabe, S. Imanishi, T. Tsuchida, T. Matsuo, Y. Ishikawa and D. Kageyama,  PNAS Nexus,  pgac293. 2022.
Cryptic recessive lethality of a supergene controlling social organization in ants
P. Blacher, O. De Gasperin, G. Grasso, S. Sarton-Lohéac, R. Allemann and M. Chapuisat,  Molecular Ecology,  2022.
New CRISPR tech makes it possible to wipe out invasive mice
,  2022.
East Maui project hopes mosquito v. mosquito mating battle will save endangered birds
K. Cerizo,  MAUINOW,  2022.
Good news in the fight against vector-borne diseases
K. Magori,  ,  2022.
Experts urge caution over biotech that can wipe out insect pests
L. Fauvel,  Phys Org,  2022.
How selfish genes succeed
Stowers Institute for Medical Research,  ScienceDaily,  2022.
S. pombe wtf drivers use dual transcriptional regulation and selective protein exclusion from spores to cause meiotic drive
N. L. Nuckolls, A. Nidamangala Srinivasa, A. C. Mok, R. M. Helston, M. A. Bravo Núñez, J. J. Lange, T. J. Gallagher, C. W. Seidel and S. E. Zanders,  PLOS Genetics,  18:e1009847. 2022.
Bioinformatic and literature assessment of toxicity and allergenicity of a CRISPR-Cas9 engineered gene drive to control the human malaria mosquito vector Anopheles gambiae
A. Qureshi and J. B. Connolly,  Malaria Journal,  2022.
A natural gene drive could steer invasive rodents on islands to extinction
B. Brookshire,  ScienceNews,  2022.
Tolerance-conferring defensive symbionts and the evolution of parasite virulence
C. A. Smith and B. Ashby,  bioRxiv,  2022.
Deregulation of Y-linked protamine-like genes in sex chromosome-biased spermatid demise
J. I. Park, G. W. Bell and Y. M. Yamashita,  bioRxiv,  2022.
A mass rearing cost calculator for the control of Culex quinquefasciatus in Hawaiʻi using the incompatible insect technique
A. E. Vorsino and Z. Xi,  Parasites and Vectors,  15:453. 2022.
Meiotic transmission patterns of additional genomic elements in Brachionus asplanchnoidis, a rotifer with intraspecific genome size variation
J. Blommaert and C.-P. Stelzer,  Scientific Reports,  12:20900. 2022.
East African policy dialogue on research of genetically modified mosquitoes for malaria control and elimination
C. Mugoya,  Target Malaria,  2022.
Oxitec’s mosquitoes are getting “friendly” with California
L. Patrick,  The Sun Gazette,  2022.
No Environmental Release of Gene Drive Organisms
Anonymous,  STOP GENE DRIVES,  2022.
A comprehensive overview of the existing microbial symbionts in mosquito vectors: An important tool for impairing pathogentransmission
V. Vandana, M. P. Kona, J. Kumar, O. P. Singh and K. C. Pandey,  Experimental Parasitology,  243. 2022.
Meiotic drive adaptive testes enlargement during early development in the stalk-eyed fly
S. L. Bradshaw, L. Meade, J. Tarlton-Weatherall and A. Pomiankowski,  Biology Letters,  18:20220352. 2022.
Rescue by gene swamping as a gene drive deployment strategy
K. D. Harris and G. Greenbaum,  bioRxiv,  2022.03.08.483503. 2022.
Scientist Recommends Gene Drive Strategies Of Pest Control To Increase Food Security
L. Agbo,  allnews,  2022.
Does severe hypoxia during irradiation of Aedes aegypti pupae improve sterile male performance?
D. A. Tussey, K. J. Linthicum and D. A. Hahn,  Parasites and Vectors,  15:446. 2022.
That new chestnut? USDA plans to allow the release of GE trees into wild forests
D. E. Davis,  The Hill,  2022.
Should NZ use contentious gene tech in our war on pests?
J. Morton,  NZ Herald,  2022.
Engineering stringent genetic biocontainment of yeast with a protein stability switch
S. A. Hoffmann and Y. Cai,  bioRxiv,  2022.11.24.517818. 2022.
Developing radiation-based sterile insect technique (SIT) for controlling Aedes aegypti: identification of a sterilizing dose
C. Chen, R. L. Aldridge, S. Gibson, J. Kline, V. Aryaprema, W. Qualls, R.-d. Xue, L. Boardman, K. J. Linthicum and D. A. Hahn,  Pest Management Science,  2022.
Discovery of 119-Million-Year-Old “Selfish” Genes Casts Doubt on Established Evolution Beliefs
Stowers Institute for Medical Research,  SciTechDaily,  2022.
Discovery of 119-Million year old Selfish Genes Casts Doubt on Established Evolution Beliefs
Stowers Institute for Medical Research,  Stowers Institute for Medical Research,  2022.
A CRISPR endonuclease gene drive reveals distinct mechanisms of inheritance bias
S. A. N. Verkuijl, E. Gonzalez, M. Li, J. X. D. Ang, N. P. Kandul, M. A. E. Anderson, O. S. Akbari, M. B. Bonsall and L. Alphey,  Nature Communications,  13:7145. 2022.
Turns Out Fighting Mosquitoes With Mosquitoes Actually Works
E. Mullin,  Wired,  2022.
Should we use a genetic weapon against mosquitoes carrying malaria?
T. H. Saey,  ScienceNewsExplores,  2022.
Health experts meet in Dar over use of GMO mosquitoes to fight Malaria
M. Chelangat,  NATION,  2022.
The effect of mating complexity on gene drive dynamics
P. Verma, R. G. Reeves, S. Simon, M. Otto and C. S. Gokhale,  The American Naturalist,  2022.
Driving lessons: a brief (personal) history of centromere drive
H. S. Malik,  Genetics,  2022.
CRISPR-Mediated Cassette Exchange (CriMCE): A Method to Introduce and Isolate Precise Marker-Less Edits
I. Morianou, A. Crisanti, T. Nolan and A. M. Hammond,  The CRISPR Journal,  2022.
A Wolbachia factor for male killing in lepidopteran insects
S. Katsuma, K. Hirota, N. Matsuda-Imai, T. Fukui, T. Muro, K. Nishino, H. Kosako, K. Shoji, H. Takanashi, T. Fujii, S.-i. Arimura and T. Kiuchi,  Nature Communications,  13:6764. 2022.
Independent evaluation of Wolbachia infected male mosquito releases for control of Aedes aegypti in Harris County, Texas, using a Bayesian abundance estimator
S. Lozano, K. Pritts, D. Duguma, C. Fredregill and R. Connelly,  PLOS Neglected Tropical Diseases,  16:e0010907. 2022.
Independent evaluation of Wolbachia infected male mosquito releases for control of Aedes aegypti in Harris County, Texas, using a Bayesian abundance estimator
S. Lozano, K. Pritts, D. Duguma, C. Fredregill and R. Connelly,  PLOS Neglected Tropical Diseases,  16:e0010907. 2022.
Centromere drive: chromatin conflict in meiosis
P. Talbert and S. Henikoff,  Current Opinion in Genetics and Development,  77:102005. 2022.
Centromere drive: chromatin conflict in meiosis
P. Talbert and S. Henikoff,  Current Opinion in Genetics and Development,  77:102005. 2022.
Gene drive could be used to wipe out invasive mice on islands
M. Le Page,  NewScientist,  2022.
Influence of public hesitancy and receptivity on reactive behaviours towards releases of male Wolbachia-Aedes mosquitoes for dengue control
M. O. Lwin, Z. Ong, C. Panchapakesan, A. Sheldenkar, L. T. Soh, I. Chen, X. Li, W. Niah, K. Vasquez, S. Sim and L.-C. Ng,  PLOS Neglected Tropical Diseases,  16:e0010910. 2022.
Wolbachia inhibits ovarian formation and increases blood feeding rate in female Aedes aegypti
M.-J. Lau, P. A. Ross, N. M. Endersby-Harshman, Q. Yang and A. A. Hoffmann,  PLOS Neglected Tropical Diseases,  16:e0010913. 2022.
World first trial to eradicate mice through gene modification
I. Mannix,  COSMOS,  2022.
SHOULD WE CREATE GENE DRIVE GREY SQUIRRELS
S. Hartley and T. Law,  GeneDriveGovernance.org,  2022.
Gene drive technology to suppress invasive mice
University of Adelaide,  Phys Org,  2022.
Calif. Legislature bites back at GE mosquito releases
L. Patrick,  Sun Gazette,  2022.
Leveraging a natural murine meiotic drive to suppress invasive populations
L. Gierus, A. Birand, M. D. Bunting, G. I. Godahewa, S. G. Piltz, K. P. Oh, A. J. Piaggio, D. W. Threadgill, J. Godwin, O. Edwards, P. Cassey, J. V. Ross, T. A. A. Prowse and P. Q. Thomas,  Proceedings of the National Academy of Sciences,  119:e2213308119. 2022.
Why we need to talk about ‘gene-drive’ grey squirrels
L. Clarke,  DevonLive,  2022.
WORLDWIDE: EXPERTS ON GENE DRIVES
Stop Gene Drive,  STOP GENE DRIVES,  2022.
Gene drive technologies: navigating the ethical landscape
N. d. Graeff,  Utrecht University,  2022.
Making waves: Comparative analysis of gene drive spread characteristics in a continuous space model
M. Pan and J. Champer,  bioRxiv,  2022.11.01.514650. 2022.
Asymmetric Inheritance: The Diversity and Evolution of Non-Mendelian Reproductive Strategies
L. Ross, A. J. Mongue, C. N. Hodson and T. Schwander,  Annual Review of Ecology, Evolution, and Systematics,  53:1-23. 2022.

D. O. Carvalho, R. Morreale, S. Stenhouse, D. A. Hahn, M. Gomez, A. Lloyd and D. Hoel,  Parasites and Vectors,  15:405. 2022.
Genetically modified mosquitoes cut the insect’s number by 96 per cent
M. Fauzia,  NewScientist,  2022.
Modeling the efficacy of CRISPR gene drive for snail immunity on schistosomiasis control
R. E. Grewelle, J. Perez-Saez, J. Tycko, E. K. O. Namigai, C. G. Rickards and G. A. De Leo,  PLOS Neglected Tropical Diseases,  16:e0010894. 2022.
Gene drive by Fusarium SKC1 is dependent on its competing allele
J. M. Lohmar, N. A. Rhoades, T. M. Hammond and D. W. Brown,  Fungal Genetics and Biology,  163:103749. 2022.
Expression of mosquito miRNAs in entomopathogenic fungus induces pathogen-mediated host RNA interference and increases fungal efficacy
C. Cui, Y. Wang, Y. Li, P. Sun, J. Jiang, H. Zhou, J. Liu and S. Wang,  Cell Reports,  41:111527. 2022.
Cross-kingdom RNAi to enhance the efficacy of insect pathogens
S. Asgari,  Trends in Parasitology,  2022.
Monotonicity properties arising in a simple model of Wolbachia invasion for wild mosquito populations
D. Vicencio, O. Vasilieva and P. Gajardo,  Mathematical Biosciences and Engineering,  20:1148-1175. 2022.
Pulled, pushed or failed: the demographic impact of a gene drive can change the nature of its spatial spread
L. Kläy, L. Girardin, V. Calvez and F. Débarre,  arXiv,  2022.
New self-sexing Aedes aegypti strain eliminates barriers to scalable and sustainable vector control for governments and communities in dengue-prone environments
S. A. M. Spinner, Z. H. Barnes, A. M. Puinean, P. Gray, T. Dafa’alla, C. E. Phillips, C. Nascimento de Souza, T. F. Frazon, K. Ercit, A. Collado, N. Naish, E. Sulston, G. C. Ll. Phillips, K. K. Greene, M. Poletto, B. D. Sperry, S. A. Warner, N. R. Rose, G,  Frontiers in Bioengineering and Biotechnology,  10. 2022.
Combining transgenesis with paratransgenesis to fight malaria
W. Huang, J. Vega-Rodriguez, C. Kizito, S.-J. Cha and M. Jacobs-Lorena,  eLife,  11:e77584. 2022.
Ethics of gene drive mosquitoes for malaria elimination
A. J. Roberts,  McMaster University,  2022.
Zombie Deer and the Scientists Behind the War on the ‘Man Eater’
S. Jones,  NC STATE CALS News,  2022.
Hidden endosymbionts: A male-killer concealed by another endosymbiont and a nuclear suppressor
K. M. Richardson, P. A. Ross, B. S. Cooper, W. R. Conner, T. Schmidt and A. A. Hoffmann,  bioRxiv,  2022.10.19.512817. 2022.
What are gene drivers and why do 300,000 people want them banned?
Anika,  Social Bites,  2022.
Target Malaria’s scientists are working to rid Africa of an ancient plague
D. Matthews,  Vox,  2022.
119-Million-Year-Old “Selfish” Genes Uncovered in Yeast
Stowers Institute for Medical Research,  Technology Networks,  2022.
Driving down malaria transmission with engineered gene drives
W. T. Garrood, P. Cuber, K. Willis, F. Bernardini, N. M. Page and R. E. Haghighat-Khah,  Frontiers in Genetics,  13. 2022.
Why we need to talk about ‘gene-drive’ grey squirrels
Anonymous,  University of Exeter,  2022.
Mosquito Gene Drives and the Malaria Eradication Agenda
Editor: R. Carballar-Lejarazu,,  Jenny Stanford Publishing,  2022.
Assessing single-locus CRISPR/Cas9-based gene drive variants in the mosquito Aedes aegypti via single generation crosses and modeling
W. Reid, A. E. Williams, I. Sanchez-Vargas, J. Lin, R. Juncu, K. E. Olson and A. W. E. Franz,  G3 Genes|Genomes|Genetics,  2022.
Introgression of a synthetic sex ratio distortion transgene into different genetic backgrounds of Anopheles coluzzii
P. Pollegioni, T. Persampieri, R. L. Minuz, A. Bucci, A. Trusso, S. Di Martino, C. Leo, M. Bruttini, M. Ciolfi, A. M. Waldvogel, F. Tripet, A. Simoni, A. Crisanti and R. Müller,  Insect Molecular Biology,  2022.
Wolbachia Biology, Mechanisms and Applications 2022
David O'Brochta,  GeneConvene Global Collaborative,  2022.
Anopheles homing suppression drive candidates exhibit unexpected performance differences in simulations with spatial structure
S. E. Champer, I. K. Kim, A. G. Clark, P. W. Messer and J. Champer,  eLife,  11:e79121. 2022.
Laboratory Containment of Arthropods Capable of Gene Drive: Best Practices and Recommendations
Hector Quemada,  GeneConvene Global Collaborative,  2022.
Wolbachia wAlbB inhibit dengue and Zika infection in the mosquito Aedes aegypti with an Australian background
L. E. Hugo, G. Rašić, A. J. Maynard, L. Ambrose, C. Liddington, C. J. E. Thomas, N. S. Nath, M. Graham, C. Winterford, B. M. C. R. Wimalasiri-Yapa, Z. Xi, N. W. Beebe and G. J. Devine,  PLOS Neglected Tropical Diseases,  16:e0010786. 2022.
The wtf meiotic driver gene family has unexpectedly persisted for over 100 million years
M. De Carvalho, G. S. Jia, A. Nidamangala Srinivasa, R. B. Billmyre, Y. H. Xu, J. J. Lange, I. M. Sabbarini, L. L. Du and S. E. Zanders,  eLife,  11. 2022.
Risk Assessment on the Release of Wolbachia-Infected Aedes aegypti in Yogyakarta, Indonesia
D. Buchori, A. Mawan, I. Nurhayati, A. Aryati, H. Kusnanto and U. K. Hadi,  Insects,  13. 2022.
Combating Mosquito-Borne Diseases with CRISPR
N. Spahich,  The Scientist,  2022.
Meiotic defects in human oocytes: Potential causes and clinical implications
T. Wu, H. Gu, Y. Luo, L. Wang and Q. Sang,  BioEssays,  2022.
Wolbachia-Virus interactions and arbovirus control through population replacement in mosquitoes
T. H. Ant, M. V. Mancini, C. J. McNamara, S. M. Rainey and S. P. Sinkins,  Pathogens and Global Health,  2022.
Research: Scientists Modify Mosquitoes That Can’t Spread Malaria
N. Kharbanda,  Onlymyhealth,  2022.
Explained: How Scientists Are Genetically modifying Mosquitoes To Reduce Malaria
Anonymous,  Outlook,  2022.
Explained: How scientists engineered mosquitoes that cannot spread malaria
FP Explainers,  Firstpost,  2022.
Fitness costs of Wolbachia shift in locally-adapted Aedes aegypti mosquitoes
P. A. Ross and A. A. Hoffmann,  Environmental Microbiology,  2022.
Points to consider in seeking biosafety approval for research, testing, and environmental release of experimental genetically modified biocontrol products during research and development
W. K. Tonui, V. Ahuja, C. J. Beech, J. B. Connolly, B. Dass, D. C. M. Glandorf, et al.,  Transgenic Research,  2022.
Mitotic exchange in female germline stem cells is the major source of Sex Ratio chromosome recombination in Drosophila pseudoobscura
S. Koury,  G3 Genes|Genomes|Genetics,  2022.
Malaria Gene Drives: A Battle Of Wit Between The Government And Stakeholders
O. Onwumere,  The Nigerian Voice,  2022.
Aedes albopictus Sterile Male Production: Influence of Strains, Larval Diet and Mechanical Sexing Tools
M. Malfacini, A. Puggioli, F. Balestrino, M. Carrieri, M. L. Dindo and R. Bellini,  Insects,  2022.
Malaria-free mosquito engineered by scientists
GNA,  MODERN GHANA,  2022.
Malaria-free mosquito engineered by scientists
D. Davies,  GHANA NEWS AGENCY,  2022.
Gene drive used to make all female mosquitoes sterile
Akfire1,  TechiLink,  2022.
Justifying an Intentional Species Extinction: The Case of Anopheles gambiae
D. E. Callies and Y. Rohwer,  Environmental Values,  31:193-210. 2022.
Distribution of sex ratio distorters in natural populations of the isopod Armadillidium vulgare
,  2022.
How We’re Reducing Disease With Genetically Modified Mosquitoes
V. Wise,  HealthMatch,  2022.
Scientists stunt parasite growth to tackle malaria
RSS24.news,  RSS24.NEWS,  2022.
Scientists are manipulating the DNA of mosquitoes to fight the spread of malaria
R. Min,  EURONEWS.NEXT,  2022.
Externalities modulate the effectiveness of the Wolbachia release programme
E. E. Ooi and A. Wilder-Smith,  The Lancet Infectious Diseases,  2022.
Estimating the effect of the wMel release programme on the incidence of dengue and chikungunya in Rio de Janeiro, Brazil: a spatiotemporal modelling study
G. Ribeiro dos Santos, B. Durovni, V. Saraceni, T. I. Souza Riback, S. B. Pinto, K. L. Anders, et al.,  The Lancet Infectious Diseases,  2022.
The Involvement of Atlastin in Dengue Virus and Wolbachia Infection in Aedes aegypti and Its Regulation by aae-miR-989
M. Hussain, T. Bradshaw, M. Lee and S. Asgari,  Microbiology Spectrum,  2022.
Wolbachia action in the sperm produces developmentally deferred chromosome segregation defects during the Drosophila mid-blastula transition
B. Warecki, S. W. A. Titen, M. S. Alam, G. Vega, N. Lemseffer, K. Hug, et al.,  eLife,  11:e81292. 2022.
Meiotic drive is associated with sexual incompatibility in Neurospora
A. Vogan, J. Svedberg, M. Grudzinska-Sterno and H. Johannesson,  Evolution,  2022.
Scientists engineer mosquitoes that cannot spread malaria
J. Dalton,  Independen,  2022.
Scientists Engineer Mosquitoes That Can’t Transmit Malaria
C. Murez,  US News,  2022.
Mosquitoes that can’t spread malaria engineered by scientists
,  2022.
Scientists engineer mosquitoes that can’t spread malaria
S. Varshney,  Gamacher Central,  2022.
Mosquitoes with honeybee DNA could tame malaria
R. Blakely,  The Times,  2022.
Genetically Engineered Mosquitoes Prevented the Growth of Malaria-causing Parasites in Their Gut
P. Mozter,  Nature World News 2022,  2022.
Fitness effects of CRISPR endonucleases in Drosophila melanogaster populations
A. M. Langmüller, J. Champer, S. Lapinska, L. Xie, M. Metzloff, S. E. Champer, J. Liu, Y. Xu, J. Du, A. G. Clark and P. W. Messer,  eLife,  11:e71809. 2022.
Wolbachia strain wAlbB remains stable in Aedes aegypti over 15 years but exhibits genetic background-dependent variation in virus blocking
X. Liang, C. H. Tan, Q. Sun, M. Zhang, P. J. Wong, M. I. Li, et al.,  PNAS Nexus,  2022.
Mosquitoes are being genetically modified so they can’t spread malaria
M. Le Page,  New Scientist,  2022.
Genetically-modified mosquitoes could ‘help wipe out malaria’
S. Knapton,  The Telegraph,  2022.
Gene drive mosquitoes can aid malaria elimination by retarding Plasmodium sporogonic development
Hoermann, Astrid, Habtewold, Tibebu, Selvaraj, Prashanth, Del Corsano, Giuseppe, Capriotti, Paolo, Inghilterra, Maria Grazia, Kebede, Temesgen M., Christophides, George K. and Windbichler, Nikolai,  Science Advances,  2022.
Scientists engineer mosquitoes that can’t spread malaria
Imperial College London,  Phys Org,  2022.
Extreme GM “extinction technology” of gene drives presented as “natural”
GM Watch,  GM Watch,  2022.
Daisy-chain gene drives: The role of low cut-rate, resistance mutations, and maternal deposition
S. A. N. Verkuijl, M. A. E. Anderson, L. Alphey and M. B. Bonsall,  PLOS Genetics,  18:e1010370. 2022.
Genome sequencing and comparative analysis of Wolbachia strain wAlbA reveals Wolbachia-associated plasmids are common
J. Martinez, T. H. Ant, S. M. Murdochy, L. Tong, A. da Silva Filipe and S. P. Sinkins,  PLOS Genetics,  18:e1010406. 2022.
Humans Have a Long History of Making ‘Very Bad Decisions’ to Save Animals
T. McDonnell,  The New York Times,  2022.
Meiotic drive does not impede success in sperm competition in the stalk-eyed fly, Teleopsis dalmanni
S. Bates, L. Meade and A. Pomiankowski,  bioRxiv,  2022.
Enforcement of Postzygotic Species Boundaries in the Fungal Kingdom
J. Y. Chou, P. C. Hsu and J. Y. Leu,  Microbiology and Molecular Biology Reviews,  2022.
Quality control traceability during the packing and release process of Ceratitis capitata for sterile insect technique
Y. Contreras-Navarro, H. Luis-Alvarez, G. García-Coapio, R. Hernández, S. Flores and P. Montoya,  Journal of Applied Entomology,  2022.
Can a bold new plan to stop mosquitoes catch on?
L. J. Young,  Popular Science,  2022.
Transposable elements
A. Hayward and C. Gilbert,  Current Biology,  32:R904-r909. 2022.
Selfish evolution of placental hormones
G. Keegan and M. M. Patten,  Evolution, Medicine, and Public Health,  10:391-397. 2022.
Analysis of Aedes aegypti microRNAs in response to Wolbachia wAlbB infection and their potential role in mosquito longevity
C. Bishop, M. Hussain, L. E. Hugo and S. Asgari,  Scientific Reports,  12:15245. 2022.
Fact Check: Bill Gates’ genetically modified mosquitoes are responsible for mosquito-borne viruses in Florida and are part of the next planned pandemic.
A. Williams,  The Paradise,  2022.
A detailed landscape of CRISPR-Cas-mediated plant disease and pest management
S. Karmakar, P. Das, D. Panda, K. Xie, M. J. Baig and K. A. Molla,  Plant Science,  323:111376. 2022.
On the Mechanistic Basis of Killer Meiotic Drive in Fungi
S. J. Saupe and H. Johannesson,  Annual Review of Microbiology,  76:305-323. 2022.
Can mosquitoes be used for biological warfare?
Health Desk,  Health Desk,  2022.
Bill Gates’ Colombian Mosquito Factory Breeding 30 Million Bacteria-Infected Mosquitos Per Week
anonymous,  GREATGAMEINDIA,  2022.
Modified mosquito releases to fight dengue fever, chikungunya or yellow fever
Sewell, Tammy,  OICANADIAN,  2022.
Life-history traits of a fluorescent Anopheles arabiensis genetic sexing strain introgressed into South African genomic background
N. L. Ntoyi, T. Mashatola, J. Bouyer, C. Kraupa, H. Maiga, W. Mamai, N. S. Bimbile-Somda, T. Wallner, D. O. Carvalho, G. Munhenga and H. Yamada,  Malaria Journal,  21:12. 2022.
Oregon State University professor releases destructive moths, wasps into orchards
E. Francovich,  statesman journal,  2022.
Toward product-based regulation of crops
F. Gould, R. M. Amasino, D. Brossard, C. R. Buell, R. A. Dixon, J. B. Falck-Zepeda, M. A. Gallo, K. E. Giller, L. L. Glenna, T. Griffin, D. Magraw, C. Mallory-Smith, K. V. Pixley, E. P. Ransom, D. M. Stelly and C. N. Stewart,  Science,  377:1051-1053. 2022.
An optimal control problem for dengue transmission model with Wolbachia and vaccination
J. Zhang, L. L. Liu, Y. Z. Li and Y. Wang,  Communications In Nonlinear Science and Numerical Simulation,  116. 2022.
How to Exterminate the Invaders: Playing Dangerously with the Pandora’s Box of Genetic Engineering
Spivey,  Czechia Posts English,  2022.
Researchers propose new framework for regulating engineered crops
North Carolina State University,  Phys Org,  2022.
An evaluation of fusion partner proteins for paratransgenesis in Asaia bogorensis
C. Grogan, M. Bennett and D. J. Lampe,  Plos One,  17:18. 2022.
Bacterial supergroup-specific “cost” of Wolbachia infections in Nasonia vitripennis
A. Tiwary, R. Babu, R. Sen and R. Raychoudhury,  Ecology and Evolution,  2022.
Call for public consultation ̶ Development of Target Product Profiles (TPPs) for Wolbachia infected Aedes aegypti population replacement intervention
World Health Organization,  WHO,  2022.
Applications of gene drive systems for population suppression of insect pests
M. Asad, D. Liu, J. Chen and G. Yang,  Bulletin of Entomological Research,  2022.
ISAAA Policy Brief: Risk Assessment for Gene Drive Organisms
Anonymous,  ISAAA,  2022.
A confinable female-lethal population suppression system in the malaria vector, Anopheles gambiae
A. L. Smidler, J. J. Pai, R. A. Apte, H. M. Sánchez C, R. M. Corder, E. J. Gutiérrez, N. Thakre, I. Antoshechkin, J. M. Marshall and O. S. Akbari,  bioRxiv,  2022.08.30.505861. 2022.
Rational engineering of a synthetic insect-bacterial mutualism
Y. Su, H.-C. Lin, L. S. Teh, F. Chevance, I. James, C. Mayfield, K. G. Golic, J. A. Gagnon, O. Rog and C. Dale,  Current Biology,  2022.
B Chromosomes in Psalidodon scabripinnis (Characiformes, Characidae) Species Complex
D. Silva, J. P. Castro, C. A. G. Goes, R. Utsunomia, M. R. Vidal, C. N. Nascimento, L. F. Lasmar, F. G. Paim, L. B. Soares, C. Oliveira, F. Porto-Foresti, R. F. Artoni and F. Foresti,  Animals (Basel),  12. 2022.
Biologists engineered insect-bacterial mutualism in ‘bucket list’ achievement
Annonymous,  @THEU,  2022.
Hoisted with his own petard: How sex-ratio meiotic drive in Drosophila affinis creates resistance alleles that limit its spread
W. J. Ma, E. M. Knoles, K. B. Patch, M. M. Shoaib and R. L. Unckless,  J Evol Biol,  2022.
CRISPR, an eco-friendly technology, may detect crop pests
W. Adam,  list23,  2022.
Infravec2 guidelines for the design and operation of containment level 2 and 3 insectaries in Europe
E. Pondeville, A.-B. Failloux, F. Simard, P. Volf, A. Crisanti, R. E. Haghighat-Khah, N. Busquets, F. X. Abad, A. J. Wilson, R. Bellini, S. Marsh Arnaud, A. Kohl and E. Veronesi,  Pathogens and Global Health,  2022.
Comparative Ubiquitome Analysis Reveals Deubiquitinating Effects Induced by Wolbachia Infection in Drosophila melanogaster
Q. Zong, B. Mao, H. B. Zhang, B. Wang, W. J. Yu, Z. W. Wang and Y. F. Wang,  International Journal Molecular Science,  23. 2022.
World Mosquito Day: Can genetic modification techniques quash the menace?
CNBCTV18,  CNBC TV18,  2022.
Outbreaks of arboviruses, biotechnological innovations and vector control: facing the unexpected
C. Boëte,  Innovative Strategies for Vector Control,  6:219-231. 2022.
Precision Guided Sterile Males Suppress Populations of an Invasive Crop Pest
N. P. Kandul, J. Liu, A. Buchman, I. C. Shriner, R. M. Corder, N. Warsinger-Pepe, T. Yang, A. K. Yadav, M. J. Scott, J. M. Marshall and O. S. Akbari,  GEN Biotechnology,  1:372-385. 2022.
CRISPR-based technology targets global crop pest
University of California - San Diego,  Phys Org,  2022.
Environmentally appropriate vector control is facilitated by standard metrics for simulation-based evaluation
V. N. Vásquez, M. R. Reddy and J. M. Marshall,  Frontiers in Tropical Diseases,  3. 2022.
Effect of Wolbachia Infection and Adult Food on the Sexual Signaling of Males of the Mediterranean Fruit Fly Ceratitis capitata
G. A. Kyritsis, P. Koskinioti, K. Bourtzis and N. T. Papadopoulos,  Insects,  13. 2022.
Natural selfish genetic elements should not be defined as gene drives
M. A. Wells and R. A. Steinbrecher,  Proceedings of the National Academy of Sciences,  119:e2201142119. 2022.
A multiplexed, confinable CRISPR/Cas9 gene drive propagates in caged Aedes aegypti populations
M. A. E. Anderson, E. Gonzalez, M. P. Edgington, J. X. D. Ang, D.-K. Purusothaman, L. Shackleford, K. Nevard, S. A. N. Verkuijl, T. Harvey-Samuel, P. T. Leftwich, K. Esvelt and L. Alphey,  bioRxiv,  2022.08.12.503466. 2022.
Harnessing Wolbachia cytoplasmic incompatibility alleles for confined gene drive: a modeling study
J. Li and J. Champer,  bioRxiv,  2022.08.09.503337. 2022.
Changing mosquito genes, spreading bacteria: Science sees success vs dengue
C. E. Baclig,  INQUIRER.NET,  2022.
Aedes aegypti and Ae. albopictus microbiome/virome: new strategies for controlling arboviral transmission?
M. Gómez, D. Martinez, M. Muñoz and J. D. Ramírez,  Parasites and Vectors,  15:287. 2022.
Reflection on the Challenges, Accomplishments, and New Frontiers of Gene Drives
M. Melesse Vergara, J. Labbé and J. Tannous,  BioDesign Research,  2022:9853416. 2022.
Sterility of Cydia pomonella by X ray irradiation as an alternative to gamma radiation for the sterile insect technique
J.-H. Zhang, N. Li, H.-Y. Zhao, Y.-Q. Wang, X.-Q. Yang and K.-M. Wu,  Bulletin of Entomological Research,  2022.
Studies on the fitness characteristics of wMel- and wAlbB-introgressed Aedes aegypti (Pud) lines in comparison with wMel- and wAlbB-transinfected Aedes aegypti (Aus) and wild-type Aedes aegypti (Pud) lines
C. Sadanandane, K. Gunasekaran, D. Panneer, S. K. Subbarao, M. Rahi, B. Vijayakumar, V. Athithan, A. Sakthivel, S. Dinesh and P. Jambulingam,  Frontiers in Microbiology,  13:947857. 2022.
Wolbachia Dynamics in Mosquitoes with Incomplete CI and Imperfect Maternal Transmission by a DDE System
Y. Su, B. Zheng and X. Zou,  Bulletin of Mathematical Biology,  84:95. 2022.
A theory of resistance to multiplexed gene drive demonstrates the significant role of weakly deleterious natural genetic variation
B. S. Khatri and A. Burt,  Proceedings of the National Academy of Sciences,  119:e2200567119. 2022.
Release the Beast? Genetically modified mosquitos for diease control
G. Ferrante,  Palatinate,  2022.
Robust control strategy by the Sterile Insect Technique for reducing epidemiological risk in presence of vector migration
P.-A. Bliman and Y. Dumont,  Mathematical Biosciences,  350:108856. 2022.
What do we mean by “Target Organism” in Target Malaria’s gene drive research?
J. B. Connolly,  Target Malaria,  2022.
Wolbachia wPip Blocks Zika Virus Transovarial Transmission in Aedes albopictus
Y. Guo, J. Guo, Y. Li, X. Zheng and Y. Wu,  Microbiol Spectrum,  e0263321. 2022.
Developing Wolbachia-based disease interventions for an extreme environment
P. A. Ross, S. Elfekih, S. Collier, M. J. Klein, S. S. Lee, M. Dunn, S. Jackson, Y. Zhang, J. K. Axford, X. Gu, M. S. Nasar, P. N. Paradkar, E. A. Taoufik, F. M. Jiggins, A. M. Almalik, M. B. Al-Fageeh and A. A. Hoffmann,  bioRxiv,  2022.07.26.501527. 2022.
Population replacement gene drive characteristics for malaria elimination in a range of seasonal transmission settings: a modelling study
S. Leung, N. Windbichler, E. A. Wenger, C. A. Bever and P. Selvaraj,  Malaria Journal,  21:226. 2022.
Non-Mendelian transmission of accessory chromosomes in fungi
J. Komluski, E. H. Stukenbrock and M. Habig,  Chromosome Research,  2022.
“Selfish Genetic Elements” – Supergene Wreaks Havoc in a Genome
University of Rochester,  SciTechDaily,  2022.
Lack of robust evidence for a Wolbachia infection in Anopheles gambiae from Burkina Faso
S. P. Sawadogo, D. A. Kabore, E. B. Tibiri, A. Hughes, O. Gnankine, S. Quek, A. Diabaté, H. Ranson, G. L. Hughes and R. K. Dabiré,  Medical and Veterinary Entomology,  2022.
Operationalizing stakeholder engagement for gene drive research in malaria elimination in Africa-translating guidance into practice
L. Pare Toe, B. Dicko, R. Linga, N. Barry, M. Drabo, N. Sykes and D. Thizy,  Malaria Journal,  21:225. 2022.
Attempts to use breeding approaches in Aedes aegypti to create lines with distinct and stable relative Wolbachia densities
A. J. Mejia, L. Jimenez, H. L. C. Dutra, R. Perera and E. A. McGraw,  Heredity,  2022.
Comprehensive characterization of a transgene insertion in a highly repetitive, centromeric region of Anopheles mosquitoes
M. Vitale, C. Leo, T. Courty, N. Kranjc, J. B. Connolly, G. Morselli, C. Bamikole, R. E. Haghighat-Khah, F. Bernardini and S. Fuchs,  Pathogens and Global Health,  2022.
Development of CRISPR/Cas9-Mediated Gene-Drive Construct Targeting the Phenotypic Gene in Plutella xylostella
M. Asad, D. Liu, J. Li, J. Chen and G. Yang,  Frontiers in Physiology,  13:938621. 2022.
What can we learn from selfish loci that break Mendel’s law?
S. E. Zanders,  PLOS Biology,  20:e3001700. 2022.
Isolation of rfk-2 (UV) , a mutation that blocks spore killing by Neurospora Spore killer-3
A. Velazquez, E. Webber, D. O'Neil, T. Hammond and N. Rhoades,  MicroPublication Biology,  2022.
A Toxin-Antidote Selfish Element Increases Fitness of its Host
L. Long, W. Xu, A. B. Paaby and P. T. McGrath,  bioRxiv,  2022.07.15.500229. 2022.
Novel gene drive based on eliciting piRNA biogenesis in insect pests
C. Henderson and B. Christina,  Rutgers Research,  2022.
Adaptive meiotic drive in selfing populations with heterozygote advantage
E. Brud,  Theoretical Population Biology,  146:61-70. 2022.
Meiotic drive in house mice: mechanisms, consequences, and insights for human biology
U. P. Arora and B. L. Dumont,  Chromosome Research,  2022.
Gene Drive in Species Complexes: Defining Target Organisms
J. B. Connolly, J. Romeis, Y. Devos, D. C. M. Glandorf, G. Turner and M. B. Coulibaly,  Trends in Biotechnology,  2022.
Genetically-enhanced biocontrols can help fight large invasive mammals
Pensoft Publishers,  Science Daily,  2022.
Gene drives and Africa’s battle against malaria
Annonymous,  Africa Verified,  2022.
A population modification gene drive targeting both Saglin and Lipophorin disables Plasmodium transmission in Anopheles mosquitoes
E. I. Green, E. Jaouen, D. Klug, R. P. Olmo, A. Gautier, S. A. Blandin and E. Marois,  bioRxiv,  2022.07.08.499187. 2022.
Scalability of genetic biocontrols for eradicating invasive alien mammals
A. Birand, P. Cassey, J. V. Ross, P. Q. Thomas and T. A. A. Prowse,  NeoBiota,  74:93-103. 2022.
Larval mosquito management and risk to aquatic ecosystems: A comparative approach including current tactics and gene-drive Anopheles techniques
R. K. D. Peterson and M. G. Rolston,  Transgenic Research,  2022.
Selfish centromeres and the wastefulness of human reproduction
L. D. Hurst,  PLOS Biology,  20:e3001671. 2022.
Slow and steady wins the race: spatial and stochastic processes and the failure of suppression gene drives
J. F. Paril and B. L. Phillips,  Molecular Ecology,  2022.
Rye B chromosomes differently influence the expression of A chromosome-encoded genes depending on the host species
A. Boudichevskaia, A. Fiebig, K. Kumke, A. Himmelbach and A. Houben,  Chromosome Research,  2022.
Do Australians support genetic technology to control feral animals?
E. Phiddian,  COSMOS,  2022.
Partial masculinization of Aedes aegypti females by conditional expression of Nix
B. B. Kojin, E. Jakes, J. K. Biedler, Z. Tu and Z. N. Adelman,  PLOS Neglected Tropical Diseases,  16:e0010598. 2022.
Gene drive designs for efficient and localisable population suppression using Y-linked editors
R. Geci, K. Willis and A. Burt,  bioRxiv,  2022.06.29.498122. 2022.
Mendel’s laws of heredity on his 200th birthday: What have we learned by considering exceptions?
J. B. Wolf, A. C. Ferguson-Smith and A. Lorenz,  Heredity,  129:1-3. 2022.
CRISPR-Mediated Genome Engineering in Aedes aegypti
R. Sun, M. Li, C. J. McMeniman and O. S. Akbari,  piRNA: Methods and Protocols,  2022.
Public perspectives towards using gene drive for invasive species management in Australia
A. Mankad, E. V. Hobman and L. Carter,  CSIRO,  2022.
Breeding out the feral cat problem
S. Schmidt,  ECOS,  2022.
The Florida Keys Mosquito Control District & Oxitec Announce Launch of Next Phase of Ground-Breaking Project
Oxitec,  Oxitec,  2022.
The suppressive potential of a gene drive in populations of invasive social wasps is currently limited
A. B. Meiborg, N. R. Faber, B. A. Taylor, B. A. Harpur and G. Gorjanc,  bioRxiv,  2022.06.27.497711. 2022.
Australians open to using genetic technology to manage feral cats
CSIRO,  MIRAGE,  2022.
cifB-transcript levels largely explain cytoplasmic incompatibility variation across divergent Wolbachia
J. D. Shropshire, E. Hamant, W. R. Conner and B. S. Cooper,  PNAS Nexus,  2022.
Manipulating Insect Sex Determination Pathways for Genetic Pest Management: Opportunities and Challenges
A. Siddall, T. Harvey-Samuel, T. Chapman and P. T. Leftwich,  Frontiers in Bioengineering and Biotechnology,  10. 2022.
Public deliberation and the regulation of gene drive in the USA
W. F. West, L. W. Buchman and R. F. Medina,  Science and Public Policy,  scac032. 2022.
Intron-derived small RNAs for silencing viral RNAs in mosquito cells
P. Y. L. Tng, L. Z. Carabajal Paladino, M. A. E. Anderson, Z. N. Adelman, R. Fragkoudis, R. Noad and L. Alphey,  PLOS Neglected Tropical Diseases,  16:e0010548. 2022.
The AalNix3&4 isoform is required and sufficient to convert Aedes albopictus females into males
Y. Zhao, B. Jin, P. Liu, X. Xiao, L. Cai, Z. Xie, L. Kong, T. Liu, W. Yang, Y. Wu, J. Gu, Z. Tu, A. A. James and X.-G. Chen,  PLOS Genetics,  18:e1010280. 2022.
Centromere drive: model systems and experimental progress
D. Dudka and M. A. Lampson,  Chromosome Research,  2022.
Sensitivity of wMel and wAlbB Wolbachia infections in Aedes aegypti Puducherry (Indian) strains to heat stress during larval development
K. Gunasekaran, C. Sadanandane, D. Panneer, A. Kumar, M. Rahi, S. Dinesh, B. Vijayakumar, M. Krishnaraja, S. K. Subbarao and P. Jambulingam,  Parasites and Vectors,  15:221. 2022.
Sexual transmission of Anopheles gambiae densovirus (AgDNV) leads to disseminated infection in mated females
K. L. Werling, R. M. Johnson, H. C. Metz and J. L. Rasgon,  Parasites and Vectors,  15:219. 2022.
Hoisted with his own petard: how sex-ratio meiotic drive in <em>Drosophila affinis</em> creates resistance alleles that limit its spread
W.-J. Ma, E. M. Knoles, K. B. Patch, M. M. Shoaib and R. L. Unckless,  bioRxiv,  2022.02.14.480432. 2022.
DriverSEAT: A spatially-explicit stochastic modelling framework for the evaluation of gene drives in novel target species
M. Legros and L. G. Barrett,  bioRxiv,  2022.06.13.496025. 2022.
Genetic Approaches for Controlling CRISPR-based Autonomous Homing Gene Drives
P. R. Chennuri, Z. N. Adelman and K. M. Myles,  Frontiers in Bioengineering and Biotechnology,  10:897231. 2022.
Natural and Engineered Sex Ratio Distortion in Insects
A. Compton and Z. Tu,  Frontiers in Ecology and Evolution,  10. 2022.
Meiotic behavior, transmission and active genes of B chromosomes in the cichlid Astatotilapia latifasciata: new clues about nature, evolution and maintenance of accessory elements
A. L. Cardoso, N. B. Venturelli, I. da Cruz, F. M. de Sá Patroni, D. de Moraes, R. A. de Oliveira, R. Benavente and C. Martins,  Molecular Genetics and Genomics,  2022.
Generation of Gene Drive Mice for Invasive Pest Population Suppression
M. D. Bunting, C. Pfitzner, L. Gierus, M. White, S. Piltz and P. Q. Thomas,  Applications of Genome Modulation and Editing,  2022.
Selective targeting of biting females to control mosquito-borne infectious diseases
B. B. Kojin, A. Compton, Z. N. Adelman and Z. Tu,  Trends in Parasitology,  2022.
Gene Drives: A Potentially New Weapon Against Mosquitoes
M. Sherman,  Times Union Online,  2022.
Male-killing-associated bacteriophage WO identified from comparisons of Wolbachia endosymbionts of Homona magnanima
H. Arai, H. Anbutsu, Y. Nishikawa, M. Kogawa, K. Ishii, M. Hosokawa, S.-R. Lin, M. Ueda, M. Nakai, Y. Kunimi, T. Harumoto, D. Kageyama, H. Takeyama and M. N. Inoue,  bioRxiv,  2022.
Iterative evolution of supergene-based social polymorphism in ants
T. Kay, Q. Helleu and L. Keller,  Philos Trans R Soc Lond B Biol Sci,  377:20210196. 2022.
Unbalanced selection: the challenge of maintaining a social polymorphism when a supergene is selfish
A. G. Tafreshi, S. P. Otto and M. Chapuisat,  Philos Trans R Soc Lond B Biol Sci,  377:20210197. 2022.
Supergene potential of a selfish centromere
F. Finseth, K. Brown, A. Demaree and L. Fishman,  Philos Trans R Soc Lond B Biol Sci,  377:20210208. 2022.
Mendel’s First Law: partisan interests and the parliament of genes
C. Veller,  Heredity,  2022.
Current Status of Mosquito Handling, Transporting and Releasing in Frame of the Sterile Insect Technique
J. Guo, X. Zheng, D. Zhang and Y. Wu,  Insects,  13. 2022.
Inside the Plan to Release Life-Saving Mosquitoes
WIRED,  WIRED,  2022.
Active genetics comes alive
V. M. Gantz and E. Bier,  BioEssays,  2022.
Mosquito control to save Hawaiian honeycreepers does not involve GMOs
Department of Land and Natural Resources,  Hawaii Department of Land and Natural Resources,  2022.
Genetically Modified Mosquitoes to Fight Malaria in Nigeria, Burkina Faso, Mali and Uganda: What Legal Response?
O. J. L. Tung,  Potchefstroom Electronic Law Journal,  25:1-42. 2022.
Investigating CRISPR/Cas9 gene drive for production of disease-preventing prion gene alleles
A. R. Castle, S. Wohlgemuth, L. Arce and D. Westaway,  PLoS One,  17:e0269342. 2022.
Retraction Note: Selective inheritance of target genes from only one parent of sexually reproduced F1 progeny in Arabidopsis
T. Zhang, M. Mudgett, R. Rambabu, B. Abramson, X. Dai, T. P. Michael and Y. Zhao,  Nature Communications,  13:3270. 2022.
Mitotic exchange in female germline stem cells is the major source of Sex Ratio chromosome recombination in Drosophila pseudoobscura
S. Koury,  bioRxiv,  2022.06.07.495109. 2022.
Gene Editing and Genetic Control of Hemipteran Pests: Progress, Challenges and Perspectives
I. D. Pacheco, L. L. Walling and P. W. Atkinson,  Frontiers in Bioengineering and Biotechnology,  10. 2022.
Establishment of Wolbachia infection in Aedes aegypti from Pakistan via embryonic microinjection and semi-field evaluation of general fitness of resultant mosquito population
M. S. Sarwar, N. Jahan, A. Ali, H. K. Yousaf and I. Munzoor,  Parasites and Vectors,  15:191. 2022.
Who decides whether to use gene drives against malaria-carrying mosquitoes?
T. H. Saey,  ScienceNews,  2022.
Non-Mendelian segregation and transmission drive of B chromosomes
J. P. M. Camacho,  Chromosome Research,  2022.
The maize abnormal chromosome 10 meiotic drive haplotype: a review
R. K. Dawe,  Chromosome Research,  2022.
Testing non-autonomous antimalarial gene drive effectors using self-eliminating drivers in the African mosquito vector Anopheles gambiae
D. A. Ellis, G. Avraam, A. Hoermann, C. A. S. Wyer, Y. X. Ong, G. K. Christophides and N. Windbichler,  PLOS Genetics,  18:e1010244. 2022.
Modifying mosquitoes to suppress disease transmission: Is the long wait over?
J. R. Powell,  Genetics,  2022.
A meiotic driver alters sperm form and function in house mice: a possible example of spite
L. Winkler and A. K. Lindholm,  Chromosome Research,  2022.
Spatial modelling for population replacement of mosquito vectors at continental scale
N. J. Beeton, A. Wilkins, A. Ickowicz, K. R. Hayes and G. R. Hosack,  PLOS Computational Biology,  18:e1009526. 2022.
Wolbachia interacts with the microbiome to shape fitness-associated traits during seasonal adaptation in Drosophila melanogaster
L. P. Henry, M. Fernandez, S. Wolf and J. Ayroles,  bioRxiv,  2022.05.31.494239. 2022.
Modeling the impact of genetically modified male mosquitoes in the spatial population dynamics of Aedes aegypti
M. R. da Silva, P. H. G. Lugão, F. Prezoto and G. Chapiro,  Scientific Reports,  12:9112. 2022.
Leveraging a natural murine meiotic drive to suppress invasive populations
L. Gierus, A. Birand, M. D. Bunting, G. I. Godahewa, S. G. Piltz, K. P. Oh, A. J. Piaggio, D. W. Threadgill, J. Godwin, O. Edwards, P. Cassey, J. V. Ross, T. A. A. Prowse and P. Q. Thomas,  bioRxiv,  2022.05.31.494104. 2022.
Unfolding the Next Frontier of Innovation in Malaria: The Way Forward
ETHealthWorld,  ET Healthworld,  2022.
Fighting Malaria With Genetically Modified Mosquitoes
K. Ferris,  Liberty Nation News,  2022.
Combined Trojan Y Chromosome Strategy and Sterile Insect Technique to Eliminate Mosquitoes: Modelling and Analysis
J. Lyu, M. Gu, S. Wang and K. Cheng,  Mathematical Problems in Engineering,  2022:2373350. 2022.
Optimization of Aedes albopictus (Diptera: Culicidae) Mass Rearing through Cost-Effective Larval Feeding
M. Kavran, A. Puggioli, S. Šiljegović, D. Čanadžić, N. Laćarac, M. Rakita, A. Ignjatović Ćupina, F. Balestrino, D. Petrić and R. Bellini,  Insects,  13. 2022.
Reply to: Assessing the efficiency of Verily’s automated process for production and release of male Wolbachia-infected mosquitoes
J. E. Crawford, K. C. Hopkins, A. Buchman, T. Zha, P. Howell, E. Kakani, J. R. Ohm, N. Snoad, L. Upson, J. Holeman, P. Massaro, S. L. Dobson, F. S. Mulligan and B. J. White,  Nature Biotechnology,  2022.
Assessing the efficiency of Verily’s automated process for production and release of male Wolbachia-infected mosquitoes
J. Bouyer, H. Maiga and M. J. B. Vreysen,  Nature Biotechnology,  2022.
Recommendations for environmental risk assessment of gene drive applications for malaria vector control
J. B. Connolly, J. D. Mumford, D. C. M. Glandorf, S. Hartley, O. T. Lewis, S. W. Evans, G. Turner, C. Beech, N. Sykes, M. B. Coulibaly, J. Romeis, J. L. Teem, W. Tonui, B. Lovett, A. Mankad, A. Mnzava, S. Fuchs, T. D. Hackett, W. G. Landis, J. M. Marshall,  Malar J,  21:152. 2022.
Perplexing dynamics of Wolbachia proteins for cytoplasmic incompatibility
T. Harumoto and T. Fukatsu,  PLOS Biology,  20:e3001644. 2022.
A nickase Cas9 gene-drive system promotes super-Mendelian inheritance in Drosophila
V. L. Del Amo, S. S. Juste and V. M. Gantz,  Cell Rep,  39:110843. 2022.
Experimental demonstration of tethered gene drive systems for confined population modification or suppression
M. Metzloff, E. Yang, S. Dhole, A. G. Clark, P. W. Messer and J. Champer,  BMC Biol,  20:119. 2022.
The Cif proteins from Wolbachia prophage WO modify sperm genome integrity to establish cytoplasmic incompatibility
R. Kaur, B. A. Leigh, I. T. Ritchie and S. R. Bordenstein,  PLOS Biology,  20:e3001584. 2022.
Wolbachia 16S rRNA haplotypes detected in wild Anopheles stephensi in eastern Ethiopia
E. Waymire, S. Duddu, S. Yared, D. Getachew, D. Dengela, S. R. Bordenstein, M. Balkew, S. Zohdy, S. R. Irish and T. E. Carter,  Parasites and Vectors,  15:178. 2022.
Genetically modified mosquitoes released to cull population
R. Goodall,  The Boar,  2022.
Strategies to Mitigate Establishment under the Wolbachia Incompatible Insect Technique
S. Soh, S. H. Ho, J. Ong, A. Seah, B. S. Dickens, K. W. Tan, J. R. Koo, A. R. Cook, S. Sim, C. H. Tan, L. C. Ng and J. T. Lim,  Viruses,  14. 2022.
Novel molecular approaches to combat vectors and vector-borne viruses: Special focus on RNA interference (RNAi) mechanisms
A. Agarwal, D. K. Sarma, D. Chaurasia and H. S. Maan,  Acta Tropica,  2022.
Gene Drives: The advanced science fiction technology used to fight malaria mosquitoes explained
Anonymous,  NewsBeezer,  2022.
The sci-fi technology tackling malarial mosquitos
Anonymous,  The Star,  2022.
Quality Control and Mating Performance of Irradiated Glossina palpalis gambiensis Males
K. Ilboudo, K. Camara, E. W. Salou and G. Gimonnea,  Insects,  13. 2022.
Elimination of a closed population of the yellow fever mosquito, Aedes aegypti, through releases of self-limiting male mosquitoes
P. B. Patil, S. K. Dasgupta, K. Gorman, A. Pickl-Herk, M. Puinean, A. McKemey, B. Char, U. B. Zehr and S. R. Barwale,  PLOS Neglected Tropical Diseases,  16:e0010315. 2022.
What role can gene editing play in predator control? And are we ready to accept it?
K. Green,  Stuff,  2022.
Bayesian network-based risk assessment of synthetic biology: Simulating CRISPR-Cas9 gene drive dynamics in invasive rodent management
E. A. Brown, S. R. Eikenbary and W. G. Landis,  Risk Analysis,  2022.
Aquatic invasive species specialists’ perceptions on the importance of genetic tools and concepts to inform management
T. A. Bernos, K. M. Jeffries and N. E. Mandrak,  Biological Invasions,  24:1863-1879. 2022.
Simple, sensitive, and cost-effective detection of wAlbB Wolbachia in Aedes mosquitoes, using loop mediated isothermal amplification combined with the electrochemical biosensing method
P. Thayanukul, B. Lertanantawong, W. Sirawaraporn, S. Charasmongkolcharoen, T. Chaibun, R. Jittungdee and P. Kittayapong,  PLOS Neglected Tropical Diseases,  16:e0009600. 2022.
Intronic gRNAs for the Construction of Minimal Gene Drive Systems
A. Nash, P. Capriotti, A. Hoermann, P. A. Papathanos and N. Windbichler,  Frontiers in Bioengineering and Biotechnology,  10. 2022.
Importation of the non gene drive genetically modified male bias mosquito strain into Burkina Faso
A. Diabate,  Target Malaria,  2022.
Self-Deleting Genes Could Control Mosquitoes And Prevent Vector-Borne Diseases
A. Russell,  Texas AM TODAY,  2022.
Lessons learned from the introduction of genetically engineered crops: relevance to gene drive deployment in Africa
H. Quemada,  Transgenic Res,  2022.
Mosquitoes Genetically Modified to Stop Disease Pass Early Test
L. Rapaport,  WebMD,  2022.
Self-eliminating Genes Tested on Disease-carrying Mosquitoes
M. Taylor,  Laboratory Equipment,  2022.
The effect of mating complexity on gene drive dynamics
P. Verma, R. G. Reeves, S. Simon, M. Otto and C. S. Gokhale,  bioRxiv,  2021.09.16.460618. 2022.
Double-tap gene drive uses iterative genome targeting to help overcome resistance alleles
A. L. Bishop, V. López Del Amo, E. M. Okamoto, Z. Bodai, A. C. Komor and V. M. Gantz,  Nat Commun,  13:2595. 2022.
Setting the world’s deadliest animal to self-destruct
A. Ossola,  QUARTZ,  2022.
Adversarial interspecies relationships facilitate population suppression by gene drive in spatially explicit models
Y. Liu, W. Teo, H. Yang and J. Champer,  bioRxiv,  2022.05.08.491087. 2022.
Local adaptation of Aedes aegypti mosquitoes to Wolbachia-induced fitness costs
P. A. Ross and A. A. Hoffmann,  bioRxiv,  2022.05.06.490959. 2022.
The fight against malaria
F. Ammache,  Year 2049,  2022.
State of Florida approves release of millions of genetically modified mosquitoes
H. Crawford,  FIRSTCOAST NEWS,  2022.
Genetically Modified Mosquitoes May Protect The World From Disease
J. R. Learn,  DISCOVER,  2022.
The principles driving gene drives for conservation
S. Hartley, R. Taitingfong and P. Fidelman,  Environmental Science and Policy,  135:36-45. 2022.
Transient Introgression of Wolbachia into Aedes aegypti Populations Does Not Elicit an Antibody Response to Wolbachia Surface Protein in Community Members
E. Lee, T. Hien Nguyen, T. Yen Nguyen, S. Nam Vu, N. Duong Tran, L. Trung Nghia, Q. Mai Vien, T. Dong Nguyen, R. Kriiger Loterio, I. Iturbe-Ormaetxe, H. A. Flores, S. L. O'Neill, D. Anh Dang, C. P. Simmons and J. E. Fraser,  Pathogens,  11. 2022.
New weapons to fight malaria transmission: A historical view
W. Huang, S.-J. Cha and M. Jacobs-Lorena,  Entomological Research,  2022.
International shipments of Wolbachia-infected mosquito eggs: towards the scaling-up of World Mosquito Program operations
J. A. Denton, D. A. Joubert, A. A. Goundar and J. R. L. Gilles,  Scientific and Technical Review,  41:91-99. 2022.
The fate of a suppressed X-linked meiotic driver: experimental evolution in Drosophila simulans
H. Bastide, D. Ogereau, C. Montchamp-Moreau and P. R. Gérard,  Chromosome Research,  2022.
Epistatic selection on a selfish Segregation Distorter supergene: drive, recombination, and genetic load
B. Navarro-Dominguez, C.-H. Chang, C. L. Brand, C. A. Muirhead, D. C. Presgraves and A. M. Larracuente,  eLife,  11:e78981. 2022.
Brit firm sparks fury after ‘releasing genetically modified mosquitoes’ into wild
C. Lawrence-Jones,  Daily Star,  2022.
CRISPR/Cas9 mediates efficient site-specific mutagenesis of the odorant receptor co-receptor (Orco) in the malaria vector Anopheles sinensis
Y. Wang, X. F. He, L. Qiao, Z. R. Yu, B. Chen and Z. B. He,  Pest Management Science,  11. 2022.
Demystifying the Convention on Biological Diversity
Hector Quemada and David O'Brochta,  GeneConvene Global Collaborative,  2022.
Engineering a self-eliminating transgene in the yellow fever mosquito, Aedes aegypti
K. Chae, C. Dawson, C. Valentin, B. Contreras, J. Zapletal, K. M. Myles and Z. N. Adelman,  PNAS Nexus,  2022.
The Financialisation of Malaria in Africa: Burkina Faso, rogue capital & GM/gene drive mosquitoes
S. Mentz-Lagrange and S. Swanepoel,  African Centre for Biodiversity,  2022.
Self-eliminating genes tested on mosquitoes
A. Russell,  AGRILIFE Today,  2022.
A New Approach to Develop Resistant Cultivars Against the Plant Pathogens: CRISPR Drives
M. I. Tek and K. Budak,  Frontiers in Plant Science,  13. 2022.
Pilot trial using mass field-releases of sterile males produced with the incompatible and sterile insect techniques as part of integrated Aedes aegypti control in Mexico
A. Martín-Park, A. Che-Mendoza, Y. Contreras-Perera, S. Pérez-Carrillo, H. Puerta-Guardo, J. Villegas-Chim, G. Guillermo-May, A. Medina-Barreiro, H. Delfín-González, R. Méndez-Vales, S. Vázquez-Narvaez, J. Palacio-Vargas, F. Correa-Morales, G. Ayora-Tal,  PLoS Negl Trop Dis,  16:e0010324. 2022.
Recent advancements in CRISPR/Cas technology for accelerated crop improvement
D. Das, D. L. Singha, R. R. Paswan, N. Chowdhury, M. Sharma, P. S. Reddy and C. Chikkaputtaiah,  Planta,  255:109. 2022.
Biotechnological Road Map for Innovative Weed Management
A. C. S. Wong, K. Massel, Y. Lam, J. Hintzsche and B. S. Chauhan,  Frontiers in Plant Science,  13. 2022.
Genetically altered mosquitoes to close gaps in malaria fight
M. Murigi,  People Daily,  2022.
MIT Researchers Propose Using Genetically Modified Mice to Fight Lyme Disease
K. Perrotte,  Field and Stream,  2022.
The evolutionary significance of meiotic drive
J. B. Searle and F. P.-M. de Villena,  Heredity,  2022.
Experimental demonstration of tethered gene drive systems for confined population modification or suppression
M. Metzloff, E. Yang, S. Dhole, A. G. Clark, P. W. Messer and J. Champer,  bioRxiv,  2021.05.29.446308. 2022.
Role of CRISPR Technology in Gene Editing of Emerging and Re-emerging Vector Borne Disease
K. K. Mahto, P. Prasad, M. Kumar, H. Dubey and A. Ranjan,  Recent Advances in Pathogen Interactions, Immunity, and Vector Control Strategies,  2022.
Gene drive escape from resistance depends on mechanism and ecology
F. Cook, J. J. Bull and R. Gomulkiewicz,  Evolutionary Applications,  2022.
Wolbachia endosymbionts in two Anopheles species indicates independent acquisitions and lack of prophage elements
S. Quek, L. Cerdeira, C. L. Jeffries, S. Tomlinson, T. Walker, G. L. Hughes and E. Heinz,  Microbial Genomics,  8. 2022.
First U.S. Open-Air Test of Genetically Modified Mosquitoes Deemed a Success
S. Kuta,  Smithosonian Magazine,  2022.
Trojan trout: could turning an invasive fish into a ‘super-male’ save a native species?
J. Miller,  The Guardian,  2022.
Genetically modified mosquitoes for controlling vector-borne diseases? Successful trial gives hope
T. Deol,  Down To Earth,  2022.
Aedes aegypti abundance and insecticide resistance profiles in the applying Wolbachia to eliminate dengue trial
W. Tantowijoyo, S. K. Tanamas, I. Nurhayati, S. Setyawan, N. Budiwati, I. Fitriana, I. Ernesia, D. S. Wardana, E. Supriyati, E. Arguni, Y. Meitika, E. Prabowo, B. Andari, B. R. Green, L. Hodgson, E. Rancès, P. A. Ryan, S. L. O'Neill, K. L. Anders, M. R. A,  PLOS Neglected Tropical Diseases,  16:e0010284. 2022.
Release of genetically modified mosquitoes created to fight disease a success: Biotech firm
C. Greenberg,  National Post,  2022.
Tests of Genetically Modified Mosquitoes Prove Positive
R. Ellis,  WebMD,  2022.
Genetically Modified Mosquitoes Work as Intended
M. L. Ford,  NEWSER,  2022.
A metapopulation approach to identify targets for Wolbachia-based dengue control
A. Reyna-Lara, D. Soriano-Paños, J. H. Arias-Castro, H. J. Martínez and J. Gómez-Gardeñes,  Chaos,  32:041105. 2022.
Environmental factors influence the local establishment of Wolbachia in Aedes aegypti mosquitoes in two small communities in central Vietnam [version 2]
N. T. Hien, D. D. Anh, N. H. Le, N. T. Yen, T. V. Phong, V. S. Nam, T. N. Duong, N. B. Nguyen, D. T. T. Huong, L. Q. Hung, C. N. T. Trinh, N. V. Hoang, V. Q. Mai, L. T. Nghia, N. T. Dong, L. H. Tho, S. Kutcher, T. P. Hurst, J. L. Montgomery, M. Woolfit, E,  Gates Open Research,  5:147. 2022.
Biotech firm announces results from first US trial of genetically modified mosquito
E. Waltz,  Nature,  2022.
The sterile insect technique is protected from evolution of mate discrimination
J. J. Bull and R. Gomulkiewicz,  PeerJ,  10:e13301. 2022.
Potential Adverse Effects of GE Mosquitoes Unknown
B. Giuffre,  The Epoch Times,  2022.
Propagation of seminal toxins through binary expression gene drives could suppress populations
J. Hurtado, S. Revale and L. M. Matzkin,  Scientific Reports,  12:6332. 2022.
Mendelian nightmares: the germline-restricted chromosome of songbirds
P. Borodin, A. Chen, W. Forstmeier, S. Fouché, L. Malinovskaya, Y. Pei, R. Reifová, F. J. Ruiz-Ruano, S. A. Schlebusch, M. Sotelo-Muñoz, A. Torgasheva, N. Vontzou and A. Suh,  Chromosome Res,  2022.
Modelling homing suppression gene drive in haplodiploid organisms
Y. Liu and J. Champer,  Proceedings of the Royal Society B: Biological Sciences,  289:20220320. 2022.
Meiotic drive in chronic lymphocytic leukemia compared with other malignant blood disorders
V. Jonsson, H. Awan, N. D. Jones, T. B. Johannesen, K. Thogersen, B. A. Steig, G. Andorsdottir and G. E. Tjonnfjord,  Scientific Reports,  12:6138. 2022.
The non-Mendelian behavior of plant B chromosomes
J. Chen, J. A. Birchler and A. Houben,  Chromosome Res,  2022.
The plan to release genetically engineered mosquitoes in California
M. Petersen,  Phys Org,  2022.
Genetically-Modified Mosquitos Could Soon Be Released in California
A. Madrigal,  KQED,  2022.
Genetically Modified Mosquitoes May Be Released in California, Experts Express Concern
Z. Papadakis,  NEWSMAX,  2022.
New frontiers in vector control
WHO,  World Health Organization,  2022.
Will genetic modification of mosquitoes take a bite out of insects’ population?
N. Patel,  KCRW,  2022.
An army of genetically engineered mosquitoes is about to be released
M. Menard,  KNX NEWS,  2022.
Explainer: The Gene Drive Technology
P. Shah,  CRISPR Medicine News,  2022.
California’s first genetically modified mosquitoes may soon be released
A. M. Asperin,  FOX11 Los Angeles,  2022.
In California, an army of genetically engineered mosquitoes awaits release. Will it backfire?
M. Petersen,  Los Angeles Times,  2022.
A homing suppression gene drive with multiplexed gRNAs maintains high drive conversion efficiency and avoids functional resistance alleles
E. Yang, M. Metzloff, A. M. Langmuller, X. J. Xu, A. G. Clark, P. W. Messer and J. Champer,  G3-Genes Genomes Genetics,  13. 2022.
Federal Government Approves Release of Millions of Genetically Engineered Mosquitoes in California
A. Jose,  The Western Journal,  2022.
Cas9-mediated maternal-effect and derived resistance alleles in a gene-drive strain of the African malaria vector mosquito, Anopheles gambiae
R. Carballar-Lejarazú, T. Tushar, T. B. Pham and A. A. James,  Genetics,  2022.
Billions of Genetically Modified Mosquitoes Are Set to Descend on California and Florida This Summer
J. Rossen,  MENTAL FLOSS,  2022.
Podcast: How do you solve a problem like malaria?
A. Jha,  The Economist,  2022.
A multi-disciplinary approach for a building common understanding of genetic engineering for malaria control in Burkina Faso
L. Pare Toe, N. Barry, A. D. Ky, S. Kekele, W. I. Meda, K. Bayala, et al.,  Humanities and Social Sciences Communications,  9. 2022.
Governing Gene Drive Technologies: A Qualitative Interview Study
N. de Graeff, K. R. Jongsma, J. E. Lunshof and A. L. Bredenoord,  AJOB Empirical Bioethics,  13:107-124. 2022.
Expanding the flexibility of genome editing approaches for population control of the malaria mosquito
N. Kranjc,  Imperial College London-PhD,  2022.
Toward a CRISPR-Cas9-Based Gene Drive in the Diamondback Moth Plutella xylostella
X. Xu, T. Harvey-Samuel, H. A. Siddiqui, J. X. D. Ang, M. E. Anderson, C. M. Reitmayer, E. Lovett, P. T. Leftwich, M. You and L. Alphey,  The CRISPR Journal,  5:224-236. 2022.
Genetically modified mosquitoes, a potential antidote to deadly diseases
TRTWorld,  TRTWorld,  2022.
Overview of paratransgenesis as a strategy to control pathogen transmission by insect vectors
N. A. Ratcliffe, J. P. Furtado Pacheco, P. Dyson, H. C. Castro, M. S. Gonzalez, P. Azambuja and C. B. Mello,  Parasites and Vectors,  15:112. 2022.
Comparison of Ground Release and Drone-Mediated Aerial Release of Aedes aegypti Sterile Males in Southern Mexico: Efficacy and Challenges
C. F. Marina, P. Liedo, J. G. Bond, A. R. Osorio, J. Valle, R. Angulo-Kladt, Y. Gómez-Simuta, I. Fernández-Salas, A. Dor and T. Williams,  Insects,  13. 2022.
UC Davis — Malaria Gene Drive Feasibility Analysis
Good Ventures,  Good Ventures,  2022.
Genetic Stability and Fitness of Aedes aegypti Red-Eye Genetic Sexing Strains With Pakistani Genomic Background for Sterile Insect Technique Applications
M. Misbah-ul-Haq, D. O. Carvalho, L. D. de la Fuente, A. A. Augustinos and K. Bourtzis,  Frontiers in Bioengineering and Biotechnology,  10. 2022.
Why a U.S. Company Plans to Release 2.4 Billion Genetically Modified Mosquitoes
M. Osborne,  Smithosonian Magazine,  2022.
UC San Diego Biology Lab Receives $1.4M Grant to Fight Malaria Spread
E. Dameron,  UC San Diego News Center,  2022.
Prescribing engagement in environmental risk assessment for gene drive technology
S. Hartley, A. Kokotovich and C. McCalman,  Regulation and Governance,  2022.
Mathematical modelling to assess the feasibility of Wolbachia in malaria vector biocontrol
S. Andreychuk and L. Yakob,  Journal of Theoretical Biology,  542. 2022.
Finding the strongest gene drive: Simulations reveal unexpected performance differences between Anopheles homing suppression drive candidates
S. E. Champer, I. K. Kim, A. G. Clark, P. W. Messer and J. Champer,  bioRxiv,  2022.03.28.486009. 2022.
Cytoplasmic incompatibility: A Wolbachia toxin–antidote mechanism comes into view
M. Hochstrasser,  Current Biology,  32:R287-R289. 2022.
B-A Chromosome Translocations Possessing an A Centromere Partly Overcome the Root-Restricted Process of Chromosome Elimination in Aegilops speltoides
D. Li, A. Ruban, J. Fuchs, H. Kang and A. Houben,  Frontiers in Cell and Developmental Biology,  10. 2022.
US poised to release 2.4bn genetically modified male mosquitoes to battle deadly diseases
G. Canon,  The Guardian,  2022.
Millions of genetically engineered mosquitoes are here to protect us
M. Kaufman,  MASHABLE,  2022.
Field Suppression of Spotted Wing Drosophila (SWD) (Drosophila suzukii Matsumura) Using the Sterile Insect Technique (SIT)
R. A. Homem, Z. Mateos-Fierro, R. Jones, D. Gilbert, A. R. McKemey, G. Slade and M. T. Fountain,  Insects,  13. 2022.
Evolution of eukaryotic centromeres by drive and suppression of selfish genetic elements
T. Kumon and M. A. Lampson,  Seminars in Cell and Developmental Biology,  2022.
Special mosquitos to combat dengue fever in Binh Duong
L. Phuong,  VN Express,  2022.
Opening up, closing down, or leaving ajar? How applications are used in engaging with publics about gene drive
A. W. Russell, A. Stelmach, S. Hartley, L. Carter and S. Raman,  Journal of Responsible Innovation,  2022.
CRISPR-mediated knockout of cardinal and cinnabar eye pigmentation genes in the western tarnished plant bug
C. C. Heu, R. J. Gross, K. P. Le, D. M. LeRoy, B. Fan, J. J. Hull, C. S. Brent and J. A. Fabrick,  Scientific Reports,  12. 2022.
A homing suppression gene drive with multiplexed gRNAs maintains high drive conversion efficiency and avoids functional resistance alleles
E. Yang, M. Metzloff, A. M. Langmüller, X. Xu, A. G. Clark, P. W. Messer and J. Champer,  bioRxiv,  2021.05.27.446071. 2022.
A scourge of genetically modified mosquitoes could be unleashed in California
J. Bote,  SFGATE,  2022.
Squashing malaria could save as many lives as covid-19 has taken
Anonymous,  The Economist,  2022.
An agent-based model to simulate the boosted Sterile Insect Technique for fruit fly management
E. G. Diouf, T. Brévault, S. Ndiaye, E. Faye, A. Chailleux, P. Diatta and C. Piou,  Ecological Modelling,  468:109951. 2022.
Symbionts and gene drive: two strategies to combat vector-borne disease
G.-H. Wang, J. Du, C. Y. Chu, M. Madhav, G. L. Hughes and J. Champer,  Trends in Genetics,  2022.
Spatial modelling for population replacement of mosquito vectors at continental scale
N. J. Beeton, A. Wilkins, A. Ickowicz, K. R. Hayes and G. R. Hosack,  bioRxiv,  2021.10.06.463299. 2022.
The power of gene editing
The Economist,  The Economist,  2022.
Differential viral RNA methylation contributes to pathogen blocking in Wolbachia-colonized arthropods
T. Bhattacharya, L. Yan, J. M. Crawford, H. Zaher, I. L. G. Newton and R. W. Hardy,  PLoS Pathogens,  18:e1010393. 2022.
Could species-focused suppression of Aedes aegypti, the yellow fever mosquito, and Aedes albopictus, the tiger mosquito, affect interacting predators? An evidence synthesis from the literature
J. A. S. Bonds, C. M. Collins and L.-C. Gouagna,  Pest Management Science,  2022.
Studying the active role of the maize B chromosome in the modulation of gene expression
University of Missouri,  Phys Org,  2022.
Billions of GE Mosquitoes May Soon Be Released in California and Florida
A. N. Mitra,  Earth Island Journal,  2022.
California’s first lab-grown mosquitoes may take flight—stirring controversy
L. M. Krieger,  Phys Org,  2022.
Fall armyworms with offspring-killing gene tested on farms in Brazil
M. Le Page,  New Scientist,  2022.
Modelling homing suppression gene drive in haplodiploid organisms
Y. Liu and J. Champer,  bioRxiv,  2021.10.12.464047. 2022.
Genetically modified mosquitoes kill their own offspring
C. Ward,  SYFY,  2022.
Combining two Genetic Sexing Strains allows sorting of non-transgenic males for Aedes genetic control
C. Lutrat, M. Burckbuchler, R. P. Olmo, R. Beugnon, A. Fontaine, T. Baldet, J. Bouyer and E. Marois,  bioRxiv,  2022.03.11.483912. 2022.
Millions Of Genetically Modified Mosquitoes To Be Set Loose In US
H. Wilmerding,  Daily Caller,  2022.
Florida Begins Release of Genetically Altered Mosquitoes to Prevent Spread of Zika
Entrepreneur staff,  Entrepreneur,  2022.
2 Billion Genetically Modified Mosquitoes Have Been Approved For Release In Florida And California
J. U. Nisa,  Wonder Engineering,  2022.
Billions of genetically modified male mosquitos will be released in California and Florida as a ‘natural pest control’ to stop the spread of diseases like Zika, yellow fever and Dengue
R. Morrison,  Daily Mail,  2022.
California Residents’ Perceptions of Gene Drive Systems to Control Mosquito-Borne Disease
C. E. Schairer, C. Triplett, O. S. Akbari and C. S. Bloss,  Frontiers in Bioengineering and Biotechnology,  10. 2022.
2 billion genetically modified mosquitos are about to be released in the US
J. Hawkins,  yahoo,  2022.
Wolbachia wAlbB inhibits bluetongue and epizootic hemorrhagic fever viruses in Culicoides midge cells
M. L. Matthews, H. O. Covey, B. S. Drolet and C. L. Brelsfoard,  Medical and Veterinary Entomology,  2022.
2 Billion Genetically Altered Mosquitoes Will Be Released in Fla. and Calif. to Fight Disease
A. Adams,  People,  2022.
Genetic Drive Systems in Nature
David O'Brochta and Hector Quemada,  GeneConvene Global Collaborative,  2022.
Genetically modified mosquitoes could be tested in California soon
S. Milius,  Science News,  2022.
Why millions of genetically modified mosquitoes could be released across US
J. Rogers,  New York Post,  2022.
Genetically Modified Mosquitoes May Be Released in Fla and Calif
R. Ellis,  WebMD,  2022.
2 Billion Genetically Modified Mosquitoes Cleared for Release in California and Florida
E. Cara,  gizmodo,  2022.
Genetically Modified Mosquitoes Set to Be Released in California and Florida
K. Roberts,  The Epoch Times,  2022.
No Sting in the Tail for Sterile Bisex Queensland Fruit Fly (Bactrocera tryoni Froggatt) Release Programs
O. L. Reynolds, D. Collins, B. C. Dominiak and T. Osborne,  Insects,  2022.
Rescue by gene swamping as a gene drive deployment strategy
K. D. Harris and G. Greenbaum,  bioRxiv,  2022.03.08.483503. 2022.
Proposed moquito release for Tulare County draws concern
E. Smith,  The Business Journal,  2022.
Millions of genetically modified mosquitoes may soon be buzzing in Florida and California. Here’s why.
R. W. Miller,  USA Today,  2022.
‘Halt this nightmare immediately’: EPA approves release of genetically-engineered mosquitoes
J. Corbett,  AlterNet,  2022.
Genetically Engineered Mosquito Imminent Mass Release Ignores Science, Public Health and Environmental Risks
H. Bourque,  Friends of the Earth,  2022.
Selfish migrants: How a meiotic driver is selected to increase dispersal
J. N. Runge, H. Kokko and A. K. Lindholm,  J Evol Biol,  2022.
GMO mosquitoes set for release in California to quell disease
M. Renda,  Courthouse News Service,  2022.
Gene drives and population persistence vs elimination: The impact of spatial structure and inbreeding at low density
P. J. Beaghton and A. Burt,  Theoretical Population Biology,  2022.
EVITA Dengue: a cluster-randomized controlled trial to EValuate the efficacy of Wolbachia-InfecTed Aedes aegypti mosquitoes in reducing the incidence of Arboviral infection in Brazil
M. H. Collins, G. E. Potter, M. D. T. Hitchings, E. Butler, M. Wiles, J. K. Kennedy, S. B. Pinto, A. B. M. Teixeira, A. Casanovas-Massana, N. G. Rouphael, G. A. Deye, C. P. Simmons, L. A. Moreira, M. L. Nogueira, D. A. T. Cummings, A. I. Ko, M. M. Teixeir,  Trials,  23:185. 2022.
New tech fights fall armyworm by letting offspring die
V. Ouma,  Sci Dev Net,  2022.
Should we kill every mosquito on Earth?
J. Phelan,  LiveScience,  2022.
Increased biting rate and decreased Wolbachia density in irradiated Aedes mosquitoes
R. Moretti, E. Lampazzi, C. Damiani, G. Fabbri, G. Lombardi, C. Pioli, A. Desiderio, A. Serrao and M. Calvitti,  Parasites and Vectors,  15:67. 2022.
A UC malaria initiative program receives grant for work researching genetically engineered mosquitoes
S. Slater,  The California Aggie,  2022.
Regulation of genetically engineered (GE) mosquitoes as a public health tool: a public health ethics analysis
Z. Meghani,  Globalization and Health,  18:21. 2022.
Wolbachia in Aedes koreicus: Rare Detections and Possible Implications
C. Damiani, A. Cappelli, F. Comandatore, F. Montarsi, A. Serrao, A. Michelutti, M. Bertola, M. V. Mancini, I. Ricci, C. Bandi and G. Favia,  Insects,  13. 2022.
Evaluation of anti-malaria potency of wild and genetically modified Enterobacter cloacae expressing effector proteins in Anopheles stephensi
H. Dehghan, S. H. Mosa-Kazemi, B. Yakhchali, N. Maleki-Ravasan, H. Vatandoost and M. A. Oshaghi,  Parasites and Vectors,  15:63. 2022.
Considerations for homology-based DNA repair in mosquitoes: Impact of sequence heterology and donor template source
J. X. D. Ang, K. Nevard, R. Ireland, D.-K. Purusothaman, S. A. N. Verkuijl, L. Shackleford, E. Gonzalez, M. A. E. Anderson and L. Alphey,  PLOS Genetics,  18:e1010060. 2022.
Gene drive mosquitoes can aid malaria elimination by retarding Plasmodium sporogonic development
A. Hoermann, T. Habtewold, P. Selvaraj, G. Del Corsano, P. Capriotti, M. G. Inghilterra, K. M. Temesgen, G. K. Christophides and N. Windbichler,  bioRxiv,  2022.02.15.480588. 2022.
An Ethical Overview of the CRISPR-Based Elimination of Anopheles gambiae to Combat Malaria
I. J. Wise and P. Borry,  Journal of Bioethical Inquiry,  2022.
A-to-I mRNA editing controls spore death induced by a fungal meiotic drive gene in homologous and heterologous expression systems
J. M. Lohmar, N. A. Rhoades, T. N. Patel, R. H. Proctor, T. M. Hammond and D. W. Brown,  Genetics,  2022.
A preliminary framework for understanding the governance of novel environmental technologies: Ambiguity, indeterminateness and drift
F. Rabitz, M. Feist, M. Honegger, J. Horton, S. Jinnah and J. Reynolds,  Earth System Governance,  12:100134. 2022.
Hoisted with his own petard: how sex-ratio meiotic drive in Drosophila affnis creates resistance alleles that limit its spread
W.-J. Ma, K. B. Patch, E. M. Knoles, M. M. Shoaib and R. L. Unckless,  bioRxiv,  2022.02.14.480432. 2022.
Wolbachia Impacts Anaplasma Infection in Ixodes scapularis Tick Cells
K. M. Skinner, J. Underwood, A. Ghosh, A. S. Oliva Chavez and C. L. Brelsfoard,  International Journal of Environmental Research and Public Health,  19. 2022.
First ever gene-edited ticks offer new weapons against Lyme disease
N. Lavars,  New Atlas,  2022.
A Closing Window of Opportunity for Gene Drive Governance in the United States
K. L. Warmbrod, M. Montague and G. K. Gronvall,  Health Security,  20:3-5. 2022.
Uniqueness and stability of periodic solutions for an interactive wild and Wolbachia-infected male mosquito model
R. Yan and Q. Sun,  Journal of Biological Dynamics,  2022.
Adult mosquito predation and potential impact on the sterile insect technique
N. S. Bimbilé Somda, H. Maïga, W. Mamai, T. Bakhoum, T. Wallner, S. B. Poda, H. Yamada and J. Bouyer,  Scientific Reports,  12:2561. 2022.
C-type lectin 4 regulates broad-spectrum melanization-based refractoriness to malaria parasites
M. L. Simões, Y. Dong, G. Mlambo and G. Dimopoulos,  PLOS Biology,  20:e3001515. 2022.
Mark-release-recapture experiment in Burkina Faso demonstrates reduced fitness and dispersal of genetically-modified sterile malaria mosquitoes
F. A. Yao, A.-A. Millogo, P. S. Epopa, A. North, F. Noulin, K. Dao, M. Drabo, C. Guissou, S. Kekele, M. Namountougou, R. K. Ouedraogo, L. Pare, N. Barry, R. Sanou, H. Wandaogo, R. K. Dabire, A. McKemey, F. Tripet and A. Diabaté,  Nature Communications,  13:796. 2022.
Quality Control Methods for Aedes albopictus Sterile Male Transportation
G. D. Mastronikolos, A. Kapranas, G. K. Balatsos, C. Ioannou, D. P. Papachristos, P. G. Milonas, A. Puggioli, I. Pajović, D. Petrić, R. Bellini, A. Michaelakis and N. T. Papadopoulos,  Insects,  2022.
The spore killers, fungal meiotic driver elements
A. A. Vogan, I. Martinossi-Allibert, S. L. Ament-Velásquez, J. Svedberg and H. Johannesson,  Mycologia,  2022.
Gene-drive mosquitoes, a prospect for future malaria control
S. A. Monawwer, A. O. I. Alzubaidi, F. Yasmin, S. M. Q. Haimour, S. M. I. Shay and I. Ullah,  Pan African Medical Journal,  41:2-6. 2022.
Articulating ethical principles guiding Target Malaria’s engagement strategy
A. J. Roberts and D. Thizy,  Malaria Journal,  21:35. 2022.
Quality over quantity: unraveling the contributions to cytoplasmic incompatibility caused by two coinfecting Cardinium symbionts
M. R. Doremus, C. M. Stouthamer, S. E. Kelly, S. Schmitz-Esser and M. S. Hunter,  Heredity,  2022.
piggyBac-based transgenic RNAi of serine protease 2 results in male sterility in Hyphantria cunea
X. Li, Q. Liu, H. Bi, Y. Wang, X. Xu, W. Sun, Z. Zhang and Y. Huang,  Insect Biochemistry and Molecular Biology,  103726. 2022.
Endosymbionts moderate constrained sex allocation in a haplodiploid thrips species in a temperature-sensitive way
A. Katlav, D. T. Nguyen, J. L. Morrow, R. N. Spooner-Hart and M. Riegler,  Heredity,  9. 2022.
Assessing Aedes aegypti candidate genes during viral infection and Wolbachia-mediated pathogen blocking
L. T. Sigle, M. Jones, M. Novelo, S. A. Ford, N. Urakova, K. Lymperopoulos, R. T. Sayre, Z. Xi, J. L. Rasgon and E. A. McGraw,  Insect Molecular Biology,  2022.
Could Crispr Flip the Switch on Insects’ Resistance to Pesticides?
E. Mullin,  WIRED,  2022.
Genetically engineered insects with sex-selection and genetic incompatibility enable population suppression
A. Upadhyay, N. R. Feltman, A. Sychla, A. Janzen, S. R. Das, M. Maselko and M. Smanski,  eLife,  11. 2022.
A flavivirus-inducible gene expression system that modulates broad-spectrum antiviral activity against dengue and Zika viruses
S.-C. Weng, Y.-X. Zhou and S.-H. Shiao,  Insect Biochemistry and Molecular Biology,  142:103723. 2022.
Gene Editing Is Popular, But Controversial, Research Are
Relias,  RELIAS MEDIA,  2022.
Paternal transmission of the Wolbachia CidB toxin underlies cytoplasmic incompatibility
B. Horard, K. Terretaz, A. S. Gosselin-Grenet, H. Sobry, M. Sicard, F. Landmann and B. Loppin,  Current Biology,  2022.
Conditions for Investment in Genetic Biocontrol of Pest Vertebrates in Australia
L. Carter, A. Mankad, S. Campbell, W. Ruscoe, K. P. Oh, P. R. Brown, M. Byrne, M. Tizard and T. Strive,  Frontiers in Agronomy,  3. 2022.
Crisp Genes
J. Mckenna,  The Simple Science,  2022.
Could Sterile Aedes albopictus Male Releases Interfere with Aedes aegypti Population in Reunion Island?
H. F. Andrianjakarivony, D. Damiens, L. Marquereau, B. Gaudillat, N. Habchi-Hanriot and L.-C. Gouagna,  Insects,  13. 2022.
Self-limiting fall armyworm: a new approach in development for sustainable crop protection and resistance management
C. E. Reavey, A. S. Walker, S. P. Joyce, L. Broom, A. Willse, K. Ercit, M. Poletto, Z. H. Barnes, T. Marubbi, B. J. Troczka, D. Treanor, K. Beadle, B. Granville, V. de Mello, J. Teal, E. Sulston, A. Ashton, L. Akilan, N. Naish, O. Stevens, N. Humphreys-Jo,  BMC Biotechnology,  22:5. 2022.
Scientists find transmission chain-breaker, give new hope for fight against malaria
ANI,  ANI,  2022.
Gene Drives in the U.K., U.S., and Australian Press (2015–2019): How a New Focus on Responsibility Is Shaping Science Communication
A. Stelmach, B. Nerlich and S. Hartley,  Science Communication,  10755470211072245. 2022.
Monitoring Needs for Gene Drive Mosquito Projects: Lessons From Vector Control Field Trials and Invasive Species
G. Rašić, N. F. Lobo, E. H. Jeffrey Gutiérrez, C. H. Sánchez and J. M. Marshall,  Frontiers in Genetics,  12:780327. 2022.
A gene drive does not spread easily in populations of the honey bee parasite Varroa destructor
N. R. Faber, A. B. Meiborg, G. R. McFarlane, G. Gorjanc and B. A. Harpur,  Apidologie,  52:1112-1127. 2022.
Track New Zealand’s Bid to Take Back Nature
K. Peek,  Scientific American,  2022.
Gene drives for vertebrate pest control: realistic spatial modelling of eradication probabilities and times for island mouse populations
A. Birand, P. Cassey, J. V. Ross, J. C. Russell, P. Thomas and T. A. A. Prowse,  Molecular Ecology,  2022.
Could we delete diseases passed down through our DNA?
E. Rayne,  SYFY,  2022.
A natural fungal gene drive enacts killing through targeting DNA
A. S. Urquhart and D. M. Gardiner,  bioRxiv,  2022.01.19.477016. 2022.
Recently introduced Wolbachia reduces bacterial species richness and reshapes bacterial community structure in Nilaparvata lugens
T.-P. Li, C.-Y. Zhou, J.-T. Gong, Z. Xi and X.-Y. Hong,  Pest Management Science,  2022.
Ethical Considerations for Gene Drive: Challenges of Balancing Inclusion, Power and Perspectives
A. Kormos, G. C. Lanzaro, E. Bier, V. Santos, L. Nazare, J. Pinto, A. A. dos Santos and A. James,  Frontiers in Bioengineering and Biotechnology,  2022.
Gene drives and metaphors
B. Nerlich,  Making Science Public,  2022.
CRISPR Technology Can Eliminate Disease-Spreading Mosquitoes
S. Krishana,  Now,  2022.
IMPACTOS AMBIENTAIS DA TÉCNICA DE GENE DRIVE PARA O CONTROLE DE EPIDEMIAS: ALCANCES E LIMITES DO PRINCÍPIO DA PRECAUÇÃO
N. R. Furtado,  PERI Revista de Filosofia,  13. 2022.
Genetic Strategy Reverses Insecticide Resistance
H. Tasoff,  The Current,  2022.
Analysis of a Cas12a-based gene-drive system in budding yeast
I. C. Lewis, Y. Yan and G. C. Finnigan,  Access Microbiol,  3:000301. 2022.
Genetic strategy reverses insecticide resistance
M. Aguilera,  Phys Org,  2022.
Nuclear technique cuts mosquito numbers in Cuban trial
M. A. Madsen,  IAEA,  2022.
Effects of Sterile Males and Fertility of Infected Mosquitoes on Mosquito-Borne Disease Dynamics
X. L. Sun, S. Q. Liu, Y. F. Lv and Y. Z. Pei,  Bulletin of Mathematical Biology,  84:33. 2022.
Gene drive communication: exploring experts’ lived experience of metaphor use
B. Nerlich and A. Stelmach,  New Genetics and Society,  2022.
Scientists expand CRISPR-Cas9 genetic inheritance control in mammals
M. Aguilera,  Phys Org,  2022.
Insect Allies – Assessment of a Viral Approach to Plant Genome Editing
K. Pfeifer, J. L. Frieß and B. Giese,  Integrated Environmental Assessment and Management,  2022.
Characterization of the first Wolbachia from the genus Scaptodrosophila, a male-killer from the rainforest species S. claytoni
K. M. Richardson, M. Schiffer, P. A. Ross, J. A. Thia and A. A. Hoffmann,  Insect Science,  2022.
Reversing insecticide resistance with allelic-drive in Drosophila melanogaster
B. Kaduskar, R. B. S. Kushwah, A. Auradkar, A. Guichard, M. Li, J. B. Bennett, A. H. F. Julio, J. M. Marshall, C. Montell and E. Bier,  Nature Communications,  13:291. 2022.
The prince, the mayor, and the U.S. fish that ate Japan
C. Elliot,  National Geographic,  2022.
Introgression of the Aedes aegypti red-eye genetic sexing strains into different genomic backgrounds for sterile insect technique applications
A. A. Augustinos , K. Nikolouli , L. D. De La Fuente , M. Misbah-Ul-Haq, D. O. Carvalho and K. Bourtzis,  Frontiers in Bioengineering and Biotechnology,  2022.
iGEM and Gene Drives: A Case Study for Governance
P. Millett, T. Alexanian, M. J. Palmer, S. W. Evans, T. Kuiken and K. Oye,  Health Security,  2022.
Lab-scale characterization and semi-field trials of Wolbachia Strain wAlbB in a Taiwan Wolbachia introgressed Ae. aegypti strain
W. L. Liu, H. Y. Yu, Y. X. Chen, B. Y. Chen, S. N. Leaw, C. H. Lin, M. P. Su, L. S. Tsai, Y. Chen, S. H. Shiao, Z. Y. Xi, A. C. C. Jang and C. H. Chen,  PLOS Neglected Tropical Diseases,  16:24. 2022.
The Need for a Tiered Registry for US Gene Drive Governance
K. L. Warmbrod, A. L. Kobokovich, R. West, G. K. Gronvall and M. Montague,  Health Security,  2022.
Effect of aneuploidy of a nonessential chromosome on gene expression in maize
X. Shi, H. Yang, C. Chen, J. Hou, T. Ji, J. Cheng and J. A. Birchler,  Plant Journal,  2022.
An Introduction to Containment Recommendations for Gene Drive Mosquitoes and the Laboratory Rearing of Genetically Engineered Mosquitoes in Africa
S. Higgs,  Vector-Borne and Zoonotic Diseases,  2022.
Preparing an Insectary in Burkina Faso to Support Research in Genetic Technologies for Malaria Control
C. Guissou, M. M. Quinlan, R. Sanou, R. K. Ouédraogo, M. Namountougou and A. Diabaté,  Vector-Borne and Zoonotic Diseases,  2022.
Beyond the eye: Kynurenine pathway impairment causes midgut homeostasis dysfunction and survival and reproductive costs in blood-feeding mosquitoes
V. Bottino-Rojas, I. Ferreira, R. D. Nunes, X. Feng, T. B. Pham, A. Kelsey, R. Carballar-Lejarazú, V. Gantz, P. L. Oliveira and A. A. James,  Insect Biochemistry and Molecular Biology,  103720. 2022.
Integrated control of Aedes albopictus in Southwest Germany supported by the Sterile Insect Technique
N. Becker, S. M. Langentepe-Kong, A. T. Rodriguez, T. T. Oo, D. Reichle, R. Luhken, J. Schmidt-Chanasit, P. Luthy, A. Puggioli and R. Bellini,  Parasites and Vectors,  15:19. 2022.
Stakeholder engagement to inform the risk assessment and governance of gene drive technology to manage spotted-wing drosophila
A. E. Kokotovich, S. K. Barnhill-Dilling, J. E. Elsensohn, R. Li, J. A. Delborne and H. Burrack,  Journal of Environmental Management,  307:114480. 2022.
Information Sharing in Senegal on the Gene Drive Technology as a potential Complementary Tool for Malaria Vector Control
AUDA-NEPAD,  AUDA-NEPAD,  2022.
Stakeholder Views on Engagement, Trust, Performance, and Risk Considerations About Use of Gene Drive Technology in Agricultural Pest Management
C. L. Goldsmith, K. E. Kang, E. Heitman, Z. N. Adelman, L. W. Buchman, D. Kerns, X. Liu, R. F. Medina and A. Vedlitz,  Health Security,  2021.
Facilitating the Conversation: Gene Drive Classification
J. Overcash and A. Golnar,  Health Security,  2021.
Modeling CRISPR gene drives for suppression of invasive rodents using a supervised machine learning framework
S. E. Champer, N. Oakes, R. Sharma, P. García-Díaz, J. Champer and P. W. Messer,  PLoS Comput Biol,  17:e1009660. 2021.
Cytoplasmic incompatibility in hybrid zones: infection dynamics and resistance evolution
E. S. Røed and J. Engelstädter,  Journal of Evolutionary Biology,  2021.
Determinants of stakeholders’ attitudes and intentions toward supporting the use of Wolbachia-infected Aedes mosquitoes for dengue control
A. F. Arham, L. Amin, M. A. C. Mustapa, Z. Mahadi, M. Yaacob and M. Ibrahim,  BMC Public Health,  21:2314. 2021.
From Wolbachia genomics to phenotype: molecular models of cytoplasmic incompatibility must account for the multiplicity of compatibility types
A. Namias, M. Sicard, M. Weill and S. Charlat,  Current Opinion in Insect Science,  2021.
Meiotic Cas9 expression mediates gene conversion in the male and female mouse germline
A. J. Weitzel, H. A. Grunwald, C. Weber, R. Levina, V. M. Gantz, S. M. Hedrick, E. Bier and K. L. Cooper,  PLOS Biology,  19:e3001478. 2021.
How sci-fi weapon could stop grey squirrels killing Britain’s trees
rymeradelle,  INentertainment,  2021.
Scientists Used CRISPR Gene Editing to Choose the Sex of Mouse Pups
S. Fan,  Singuarity Hub,  2021.
Weakly deleterious natural genetic variation amplifies probability of resistance in multiplexed gene drive systems
B. S. Khatri and A. Burt,  bioRxiv,  2021.12.23.473701. 2021.
Interaction Between Entomology and Gene Technology: Bt-transgenic and Gene Drives for Pests Control .
J. C. Ndayıragıje, T. Özek, H. Çevik and İ. Karaca,  Türk Bilim ve Mühendislik Dergisi,  3:108-115. 2021.
chinmo-mutant spermatogonial stem cells cause mitotic drive by evicting non-mutant neighbors from the niche
C. Y. Tseng, M. Burel, M. Cammer, S. Harsh, M. S. Flaherty, S. Baumgartner and E. A. Bach,  Developmental Cell,  2021.
Driving the Self-Destruction of Malaria-Transmitting Mosquitos
H. Aliouche,  News Medical Life Sciences,  2021.
Temporal Viability of Aedes aegypti and Aedes albopictus Eggs Using Two Hygroscopic Substances as Preservatives under a Sterile Insect Technique (SIT) Program in Southern Mexico
E. N. Martínez-García, E. E. Díaz-González, C. F. Marina, J. G. Bond, J. J. Rodríguez-Rojas, G. Ponce-García, R. M. Sánchez-Casas and I. Fernández-Salas,  Insects,  13. 2021.
Three Decades of Malaria Vector Control in Sudan: The Plausible Role of Sterile Insect Technique (SIT)
A. Elaagip and A. Adedapo,  Genetically Modified and other Innovative Vector Control Technologies,  2021.
Perspectives into Genetic Manipulations for Control of Dengue Vector (Aedes aegypti Linnaeus, 1762) with Reference to Progress in Indian Experiments
R. Chatterjee, S. Bhattacharya and B. K. Tyagi,  Genetically Modified and other Innovative Vector Control Technologies,  2021.
Aedes Control Using Sterile Insect Technique (SIT) in Malaysia
W. A. Nazni, G.-N. Teoh, S. I. Shaikh Norman Hakimi, M. A. Muhammad Arif, M. Tanusshni, M. A. Nuradila, A. Nurfarahin Hanini, I. A. Shazia, A.-M. Tan, H. Rabizah, M. D. Ahmad Zainuri, A. Hasnor Hadi, Y.-L. Cheong, A. Norazah, H. Maiga, R. S. Lees and L. H,  Genetically Modified and other Innovative Vector Control Technologies,  2021.
Integrated Management of Malaria Vectors in Africa
R. Mbabazi, K. Maredia, B. B. El-Sayed, A. K. Babumba, M. Savadogo and O. Akinbo,  Genetically Modified and other Innovative Vector Control Technologies,  2021.
Engineering RNA Interference-Based Dengue Virus Resistance in the Mosquito Vector Aedes aegypti: The Current Status and Future Directions
S. D. Denipitiyage, Y. I. N. S. Gunawardene, Z. Federico and R. S. Dassanayake,  Genetically Modified and other Innovative Vector Control Technologies,  2021.
Wolbachia: Biological Control Strategy Against Arboviral Diseases
I. Mohanty, A. Rath and R. K. Hazra,  Genetically Modified and other Innovative Vector Control Technologies,  2021.
Wolbachia Endosymbiont and Mosquito Vectors, with Emphasis on Lymphatic Filariasis Elimination
I. P. Sunish,  Genetically Modified and other Innovative Vector Control Technologies,  2021.
Laboratory Biosafety in Handling Genetically Modified Mosquitoes
J. Charles,  Genetically Modified and other Innovative Vector Control Technologies,  2021.
Safety Assessment of Novel Genetic Technologies for Vector Control: National and International Perspectives
V. Ahuja,  Genetically Modified and other Innovative Vector Control Technologies,  2021.
Measuring Public Attitudes to Releases of Transgenic Mosquitoes for Disease Control, with Special Reference to Dengue and Malaria
L. A. De Las Llagas and M. S. T. Gunigundo,  Genetically Modified and other Innovative Vector Control Technologies,  2021.
Experiences and Outcomes from a Worldwide Training Programme on Genetically Modified Vectors (GMVs) Related Biosafety for Human Health and the Environment
B. K. Tyagi,  Genetically Modified and other Innovative Vector Control Technologies,  2021.
Advances in Aedes Mosquito Vector Control Strategies Using CRISPR/Cas9
P. D. S. U. Wickramasinghe, G. N. Silva, Y. I. N. Silva Gunawardene and R. S. Dassanayake,  Genetically Modified and other Innovative Vector Control Technologies,  2021.
Genetic Improvements to the Sterile Insect Technique (SIT) for the Control of Mosquito Population
P. V. D. Dilani, Y. I. N. S. Gunawardene and R. S. Dassanayake,  Genetically Modified and other Innovative Vector Control Technologies,  2021.
Field Trials of Gene Drive Mosquitoes: Lessons from Releases of Genetically Sterile Males and Wolbachia-infected Mosquitoes
J. M. Marshall and V. N. Vásquez,  Genetically Modified and other Innovative Vector Control Technologies,  2021.
Arthropods of Medical Importance: Need for Genetic and Other Innovative Vector Control Technologies, with Emphasis on Eco-biosocial and Environmental Considerations.
B. K. Tyagi,  Genetically Modified and other Innovative Vector Control Technologies,  2021.
The Effects of Boric Acid Sugar Bait on Wolbachia Trans-Infected Male Aedes albopictus (ZAP Males®) in Laboratory Conditions
V. S. Aryaprema, W. A. Qualls, K. L. Dobson, S. L. Dobson and R.-D. Xue,  Insects,  13. 2021.
Genetically Modified and other Innovative Vector Control Technologies
B. K. Tyagi,  SpringerLink,  2021.
Safe Application of Genetically Modified Mosquito (GMM) to Combat Dengue and Chikungunya Depends on Socioeconomic Status and Social Acceptance in the Developing Countries: A Comprehensive Analysis
M. N. Islam,  Genetically Modified and other Innovative Vector Control Technologies,  2021.
Malaria vector control tools in emergency settings: What do experts think? Results from a DELPHI survey
C. Boete, S. Burza, E. Lasry, S. Moriana and W. Robertson,  Conflict and Health,  15:11. 2021.
Gene Drives For Malaria Control And Elimination
Annonymous,  Health Tech,  2021.
Oxitec wraps mosquito trials for the season
T. O'Hara,  Keynews.com,  2021.
Gene Editing in the Wild: Shaping Decisions through Broad Public Deliberation
M. K. Gusmano, G. E. Kaebnick, K. J. Maschke, C. P. Neuhaus and B. C. Wills,  The Hastings Center Report,  51. 2021.
Genetic Control in Historical Perspective: The Legacy of India’s Genetic Control of Mosquitoes Unit
R. Wilbanks,  Hastings Center Report,  51:S11-S18. 2021.
Deficits of Public Deliberation in U.S. Oversight for Gene Edited Organisms
J. Kuzma,  Hastings Center Report,  51 Suppl 2:S25-s33. 2021.
Public Deliberation about Gene Editing in the Wild
M. K. Gusmano, G. E. Kaebnick, K. J. Maschke, C. P. Neuhaus and B. C. Wills,  Hastings Center Report,  51 Suppl 2:S2-s10. 2021.
Empowering Indigenous Knowledge in Deliberations on Gene Editing in the Wild
R. Taitingfong and A. Ullah,  Hastings Center Report,  51 Suppl 2:S74-s84. 2021.
The Decision Phases Framework for Public Engagement: Engaging Stakeholders about Gene Editing in the Wild
S. K. Barnhill-Dilling, A. Kokotovich and J. A. Delborne,  Hastings Center Report,  51 Suppl 2:S48-s61. 2021.
How Israelis help the world fight mosquito-borne diseases
A. K. Leichman,  ISRAEL21c,  2021.
No, genetically engineered mosquitoes aren’t about to be released in Berkeley
K. D. Rauch,  Berkeleyside,  2021.
Diverse mating phenotypes impact the spread of wtf meiotic drivers in Schizosaccharomyces pombe
J. F. L. Hernandez, R. M. Helston, J. J. Lange, R. B. Billmyre, S. H. Schaffner, M. T. Eickbush, S. McCroskey and S. E. Zanders,  Elife,  10:30. 2021.
Exploiting a Y chromosome-linked Cas9 for sex selection and gene drive
S. Gamez, D. Chaverra-Rodriguez, A. Buchman, N. P. Kandul, S. C. Mendez-Sanchez, J. B. Bennett, C. H. Sánchez, T. Yang, I. Antoshechkin, J. E. Duque, P. A. Papathanos, J. M. Marshall and O. S. Akbari,  Nature Communications,  7202. 2021.
Evolution of B Chromosomes: From Dispensable Parasitic Chromosomes to Essential Genomic Players
M. Johnson Pokorná and R. Reifová,  Frontiers in Genetics,  12:727570. 2021.
Genomic insertion locus and Cas9 expression in the germline affect CRISPR/Cas9-based gene drive performance in the yellow fever mosquito Aedes aegypti
W. R. Reid, J. Lin, A. E. Williams, R. Juncu, K. E. Olson and A. W. E. Franz,  bioRxiv,  2021.12.08.471839. 2021.
Modeling impact and cost-effectiveness of driving-Y gene drives for malaria elimination in the Democratic Republic of the Congo
N. Metchanun, C. Borgemeister, G. Amzati, J. von Braun, M. Nikolov, P. Selvaraj and J. Gerardin,  Evolutionary Applications,  2021.
In Real Life: GMOsquitoes
Newsy,  Newsy,  2021.
Gene editing used to create all-male or all-female litters of mice
J. Goodyer,  Science Focus,  2021.
Genetic conversion of a split-drive into a full-drive element
G. Terradas, J. B. Bennett, Z. Li, J. M. Marshall and E. Bier,  bioRxiv,  2021.12.05.471291. 2021.
Nuclear transport genes recurrently duplicate by means of RNA intermediates in Drosophila but not in other insects
A. Mirsalehi, D. N. Markova, M. Eslamieh and E. Betrán,  BMC Genomics,  22:876. 2021.
The economic value of genetically engineered mosquitoes as a Malaria control strategy depends on local transmission rates
K. Lacy, K. A. Schaefer, D. P. Scheitrum and E. Y. Klein,  Biotechnology Journal,  10. 2021.
Demographic feedbacks can hamper the spatial spread of a gene drive
L. Girardin and F. Débarre,  Journal of Mathematical Biology,  83:67. 2021.
Gene editing used to create all-male or all-female mice litters
A. Reis,  European Scientist,  2021.
Towards Integrated Management of Dengue in Mumbai
P. N. Paradkar, P. R. Sahasrabudhe, M. Ghag Sawant, S. Mukherjee and K. R. Blasdell,  Viruses,  13. 2021.
A flurry of sex-ratio distorters
A. A. Vogan,  Nature Ecology and Evolution,  2021.
Rapid evolutionary dynamics of an expanding family of meiotic drive factors and their hpRNA suppressors
J. Vedanayagam, C. J. Lin and E. C. Lai,  Nature Ecology and Evolution,  2021.
The Potential for a Released Autosomal X-Shredder Becoming a Driving-Y Chromosome and Invasively Suppressing Wild Populations of Malaria Mosquitoes
Y. Alcalay, S. Fuchs, R. Galizi, F. Bernardini, R. E. Haghighat-Khah, D. B. Rusch, J. R. Adrion, M. W. Hahn, P. Tortosa, R. Rotenberry and P. A. Papathanos,  Frontiers in Bioengineering and Biotechnology,  9. 2021.
Gene-editing used to create single sex mice litters
The Francis Crick Institute,  Phys Org,  2021.
Single-sex mice litters were created with 100% efficiency using gene editing.
R. Silman,  Brinkwire,  2021.
Scientists eye gene drive technology to combat malaria
S. Buguzi,  Sci Dev Net,  2021.
Lab animals: Gene-editing technology is used to create female-only and male-only mice litters
todayuknews,  Today UK News,  2021.
Gene editing produces all-male or all-female litters of mice
E. Pennisi,  Science,  2021.
CRISPR-Cas9 effectors facilitate generation of single-sex litters and sex-specific phenotypes
C. Douglas, V. Maciulyte, J. Zohren, D. M. Snell, S. K. Mahadevaiah, O. A. Ojarikre, P. J. I. Ellis and J. M. A. Turner,  Nature Communications,  12:6926. 2021.
Public Perceptions Regarding Genomic Technologies Applied to Breeding Farm Animals: A Qualitative Study
F. Z. Naab, D. Coles, E. Goddard and L. J. Frewer,  BioTech,  10. 2021.
CRISPR gene-drive systems based on Cas9 nickases promote super-Mendelian inheritance in Drosophila
V. Lopez del Amo, S. Sanz Juste and V. M. Gantz,  bioRxiv,  2021.12.01.470847. 2021.
Demographic feedbacks can hamper the spatial spread of a gene drive
F. Debarre and L. Girardin,  bioRxiv,  2021.12.01.470771. 2021.
Gene drive that results in addiction to a temperature-sensitive version of an essential gene triggers population collapse in Drosophila
G. Oberhofer, T. Ivy and B. A. Hay,  Proceedings of the National Academy of Sciences,  118:e2107413118. 2021.
Applying functional genomics to the study of lamprey development and sea lamprey population control
J. R. York, R. E. Thresher and D. W. McCauley,  Journal of Great Lakes Research,  47:S639-S649. 2021.
New Arthropod Containment Recommendations Provide Essential Guidance for Safety of Gene Drive Research
S. James and D. O’Brochta,  The American Journal of Tropical Medicine and Hygiene,  tpmd211148. 2021.
New molecular genetic techniques: regulatory and societal considerations
Nielsen, K. M.,  AREA-WIDE INTEGRATED PEST MANAGEMENT: Development and Field Application,  2021.
Genome editing and its applications for insect pest control: Curse or blessing?
Hacker, I. , and Schetelig, M. F,  AREA-WIDE INTEGRATED PEST MANAGEMENT: Development and Field Application,  2021.
Area-wide management of fruit flies in a tropical mango growing area integrating the sterile insect technique and biological control: From a research to an operational programme
Liedo, P., Montoya, P. , and Toledo, J.,  AREA-WIDE INTEGRATED PEST MANAGEMENT: Development and Field Application,  2021.
Procedurally Robust Risk Assessment Framework for Novel Genetically Engineered Organisms and Gene Drives
Kuzma, J.,  Regulation and Governance,  15:1144-1165. 2021.
CRISPR-based gene drives for combatting malaria: Need for an early stage technology assessment.
Liebert, W.,  AREA-WIDE INTEGRATED PEST MANAGEMENT: Development and Field Application,  2021.
AREA-WIDE INTEGRATED PEST MANAGEMENT: Development and Field Application
Hendrichs, J. Pereira, R., Vreysen, M. J. B.,  AREA-WIDE INTEGRATED PEST MANAGEMENT: Development and Field Application,  2021.
Synthetic sex ratio distorters based on CRISPR for the control of harmful insect populations
Fasulo, B., Meccariello, A., Papathanos, P. A., and Windbichler, N.,  AREA-WIDE INTEGRATED PEST MANAGEMENT: Development and Field Application,  2021.
Combined sterile insect technique and incompatible insect technique: concept, study design, experience and lessons learned from a pilot suppression trial in Thailand
Kittayapong, P.,  AREA-WIDE INTEGRATED PEST MANAGEMENT: Development and Field Application,  2021.
Barriers and facilitators of area-wide management including sterile insect technique application: The example of Queensland fruit fly
Mankad, A., Loechel, B., and Measham, P. F.,  AREA-WIDE INTEGRATED PEST MANAGEMENT: Development and Field Application,  2021.
Putting the sterile insect technique into the modern integrated pest management toolbox to control the codling moth in Canada
Nelson, C., Esch, E., Kimmie, S., Tesche, M., and Philip, H. Arthur, S.,  AREA-WIDE INTEGRATED PEST MANAGEMENT: Development and Field Application,  2021.
Ecology, behaviour and area-wide control of the floodwater mosquito Aedes sticticus, with potential of future integration of the sterile insect technique
Lundstrom, J. O. Schafer, M. L. Kittayapong, P.,  AREA-WIDE INTEGRATED PEST MANAGEMENT: Development and Field Application,  2021.
Area-wide management of mediterranean fruit fly with the sterile insect technique in South Africa: New production and management techniques pay dividends
Venter, J. H., Baard, C. W. L., and Barnes, B. N.,  AREA-WIDE INTEGRATED PEST MANAGEMENT: Development and Field Application,  2021.
Wolbachia cifB induces cytoplasmic incompatibility in the malaria mosquito vector
K. L. Adams, D. G. Abernathy, B. C. Willett, E. K. Selland, M. A. Itoe and F. Catteruccia,  Nature Microbiology,  6:1575-1582. 2021.
Wolbachia reduces virus infection in a natural population of Drosophila
R. Cogni, S. D. Ding, A. C. Pimentel, J. P. Day and F. M. Jiggins,  Communications Biology,  4:1327. 2021.
Podcast: Malaria Gene Drive
S. Hartley, S. Neema and C. Opesen,  University of Exeter Business School,  2021.
Propagation of seminal toxins through binary expression gene drives can suppress polyandrous populations
J. Hurtado, S. Revale and L. M. Matzkin,  bioRxiv,  2021.11.23.469777. 2021.
Tubulin post-translational modifications in meiosis
T. Akera,  Seminars in Cell & Developmental Biology,  2021.
Major phase of Florida Keys GMO mosquito release complete, company says
D. Goodhue,  Miami Herald,  2021.
Evaluation of Transgenic Aedes aegypti L. Strain in India: A Friendly Mosquito
P. B. Patil, K. K. Yadav, S. K. Dasgupta, U. B. Zehr, S. R. Barwale and B. Char,  Genetically Modified and other Innovative Vector Control Technologies,  2021.
Historical perspective and new avenues to control the myiasis-causing fly Cochliomyia hominivorax in Uruguay.
Fresia P, Pimentel S, Iriarte V, Marques L, Durán V, Saravia A, Novas R, Basika T, Ferenczi A, Castells D, Saporiti T, Cuore U, Losiewicz S, Fernández F, Ciappesoni G, Dalla-Rizza M and M. A.,  Agrociencia Uruguay,  25:e974. 2021.
Science Has Given Us the Power to Undermine Nature’s Deadliest Creature: Should We Use It?
E. Herold,  leaps.org,  2021.
A Household-Based Survey to Understand Factors Influencing Awareness, Attitudes and Knowledge towards Wolbachia-Aedes Technology
L. T. Soh, Z. Ong, K. Vasquez, I. Chen, X. Li, W. Niah, C. Panchapakesan, A. Sheldenkar, S. Sim, L. C. Ng and M. O. Lwin,  International Journal of Environmental Research and Public Health,  18. 2021.
High-resolution in situ analysis of Cas9 germline transcript distributions in gene-drive Anopheles mosquitoes
G. Terradas, A. Hermann, A. A. James, W. McGinnis and E. Bier,  G3-Genes Genomes Genetics,  2021.
Transmission distortion and genetic incompatibilities between alleles in a multigenerational mouse advanced intercross line
D. Arends, S. Kärst, S. Heise, P. Korkuc, D. Hesse and G. A. Brockmann,  Genetics,  2021.
Gene drives in malaria control: what we need to know
R. Mudziwapasi, M. C. Changara, A. Ndudzo, T. Kaseke, F. Godobo, F. L. Mtemeli, R. Shoko, F. Songwe, S. Ndlovu and S. Sandra Mlambo,  Biotechnology and Biotechnological Equipment,  35:1623-1631. 2021.
Gene drives and population persistence vs elimination: the impact of spatial structure and inbreeding at low density
P. J. Beaghton and A. Burt,  bioRxiv,  2021.11.11.468225. 2021.
New developments in the field of genomic technologies and their relevance to conservation management
G. Segelbacher, M. Bosse, P. Burger, P. Galbusera, J. A. Godoy, P. Helsen, C. Hvilsom, L. Iacolina, A. Kahric, C. Manfrin, M. Nonic, D. Thizy, I. Tsvetkov, N. Veličković, C. Vilà, S. M. Wisely and E. Buzan,  Conservation Genetics,  2021.
Molecular Mechanisms and Evolutionary Consequences of Spore Killers in Ascomycetes
S. Zanders and H. Johannesson,  Microbiology and Molecular Biology Reviews,  2021.
High Temperature Cycles Result in Maternal Transmission and Dengue Infection Differences Between Wolbachia Strains in Aedes aegypti
M. V. Mancini, T. H. Ant, C. S. Herd, J. Martinez, S. M. Murdochy, D. D. Gingell, E. Mararo, P. C. D. Johnson and S. P. Sinkins,  mBio,  e0025021. 2021.
The drone, the tool of the future to combat its spread
T. Thompson,  Your Decommissioning News,  2021.
Two years of laboratory studies on the non gene drive genetically modified sterile male mosquitoes concluded successfully in Mali
M. Coulibaly,  Target Malaria,  2021.
Genetic control of invasive sea lamprey in the Great Lakes
D. Ferreira-Martins, J. Champer, D. W. McCauley, Z. Zhang and M. F. Docker,  Journal of Great Lakes Research,  2021.
Uncle Sam’s Dangerous Game
X. Ping,  XINHUANET,  2021.
Malaria modeling and optimal control using sterile insect technique and insecticide-treated net
L. Cai, L. Bao, L. Rose, J. Summers and W. Ding,  Applicable Analysis,  2021.
Will freeing ourselves (forever) from mosquitoes soon be a realizable “dream”? Pros and cons of an epochal turning point – breaking latest news
Annonymous,  Breaking Latest News,  2021.
New Zealand wants to get rid of stoats with genetic engineering
C. Weerasinghe,  Cyber Layman,  2021.
The supernumerary B chromosome of maize: drive and genomic conflict
J. A. Birchler and H. Yang,  Open Biol,  11:210197. 2021.
Oxitec Announces Ground-breaking Commercial Launch of Its Friendly™ Aedes aegypti Solution in Brazil
Oxitec,  COSION,  2021.
Temperature-Inducible Precision-Guided Sterile Insect Technique
N. P. Kandul, J. R. Liu and O. S. Akbari,  CRISPR Journal,  14. 2021.
Population replacement gene drive characteristics for malaria elimination in a range of seasonal transmission settings: a modeling study
S. Leung, N. Windbichler, E. Wenger, C. Bever and P. Selvaraj,  bioRxiv,  2021.11.01.466856. 2021.
Centromere function in asymmetric cell division in Drosophila female and male germline stem cells
A. M. Kochendoerfer, F. Modafferi and E. M. Dunleavy,  Open Biology,  11:210107. 2021.
Fighting Dengue Virus with Biological Weapons
Z. Ebrahim,  Inter Press Service,  2021.
Modeling the efficacy of CRISPR gene drive for schistosomiasis control
R. E. Grewelle, J. Perez-Saez, J. Tycko, E. K. O. Namigai, C. G. Rickards and G. A. De Leo,  bioRxiv,  2021.10.29.466423. 2021.
Prevalence and molecular characterization of Wolbachia in field-collected Aedes albopictus, Anopheles sinensis, Armigeres subalbatus, Culex pipiens and Cx. tritaeniorhynchus in China
Y. Yang, Y. He, G. Zhu, J. Zhang, Z. Gong, S. Huang, G. Lu, Y. Peng, Y. Meng, X. Hao, C. Wang, J. Sun and S. Shang,  PLOS Neglected Tropical Diseases,  15:e0009911. 2021.
Wolbachia goes to work in the war on mosquitoes
S. Ong,  Nature,  598:S32-s34. 2021.
Alternatives for mammal pest control in New Zealand in the context of concerns about 1080 toxicant (sodium fluoroacetate)
B. Warburton, C. Eason, P. Fisher, N. Hancox, B. Hopkins, G. Nugent, S. Ogilvie, T. A. A. Prowse, J. Ross and P. E. Cowan,  New Zealand Journal of Zoology,  43. 2021.
A decade of stability for wMel Wolbachia in natural Aedes aegypti populations
P. A. Ross, K. L. Robinson, Q. Yang, A. G. Callahan, T. L. Schmidt, J. K. Axford, M. P. Coquilleau, K. M. Staunton, M. Townsend, S. A. Ritchie, M.-J. Lau, X. Gu and A. A. Hoffmann,  bioRxiv,  2021.10.27.466190. 2021.
RNA virome diversity and Wolbachia infection in individual Drosophila simulans flies
A. S. Ortiz-Baez, M. Shi, A. A. Hoffmann and E. C. Holmes,  Journal of General Virology,  102. 2021.
Containment Practices for Arthropods Modified with Engineered Transgenes Capable of Gene Drive Addendum 1 to the Arthropod Containment Guidelines, Version 3.2
American Committee of Medical Entomology,  Vector-Borne and Zoonotic Diseases,  2021.
European Parliament adopts text on biodiversity, calls for no releases of gene drive organisms
Third World Network,  TWN Biosafety Briefing,  2021.
A Golden Menace
S. Moutinho,  Science,  2021.
Genome Editing Tools and Gene Drives: A Brief Overview (1st ed.).
R. Mudziwapasi, R. Chekera, C. Z. Ncube, I. Shoko, B. Ncube, T. Moyo, J. G. Chimbo, J. Dube, F. F. Mashiri, M. A. Mubani, D. Maruta, C. Chimbo, M. Masuku, R. Shoko, R. P. Nyamusamba and F. N. Jomane,  CRC Press,  2021.
Positive selection and horizontal gene transfer in the genome of a male-killing Wolbachia
T. Hill, R. L. Unckless and J. I. Perlmutter,  Molecular Biology and Evolution,  2021.
Conditional knockdown of transformer in sheep blow fly suggests a role in repression of dosage compensation and potential for population suppression
M. E. Williamson, Y. Yan and M. J. Scott,  PLOS Genetics,  17:e1009792. 2021.
Ecological vulnerability analysis for suppression of Drosophila suzukii by gene drives
C. R. Lalyer, L. Sigsgaard and B. Giese,  Global Ecology and Conservation,  32:e01883. 2021.
A gene drive does not spread easily in populations of the honey bee parasite Varroa destructor
N. R. Faber, A. B. Meiborg, G. R. McFarlane, G. Gorjanc and B. A. Harpur,  Apidologie,  2021.
Gene drive and RNAi technologies: a bio-cultural review of next-generation tools for pest wasp management in New Zealand
S. Palmer, P. K. Dearden, O. R. Mercier, A. King-Hunt and P. J. Lester,  Journal of the Royal Society of New Zealand,  1-18. 2021.
A Maternal-Effect Toxin Affects Epithelial Differentiation and Tissue Mechanics in Caenorhabditis elegans
C. Lehmann and C. Pohl,  Frontiers in Cell and Developmental Biology,  9. 2021.
Novel Symbiotic Genome-Scale Model Reveals Wolbachia’s Arboviral Pathogen Blocking Mechanism in Aedes aegypti
N. E. Jiménez, Z. P. Gerdtzen, Á. Olivera-Nappa, J. C. Salgado and C. Conca,  mBio,  e0156321. 2021.
Decision and Analysis Tools for Complex Problems
Hector Quemada and David O'Brochta,  GeneConvene Global Collaborative,  2021.
Modeling homing suppression gene drive in haplodiploid organisms
Y. Liu and J. Champer,  bioRxiv,  2021.10.12.464047. 2021.
Sterilizing Male Mosquitoes with Gene Editing to Reduce Disease Spread
Global Biodefense Staff,  Global Biodefense,  2021.
Small-scale release of non-gene drive mosquitoes in Burkina Faso: from engagement implementation to assessment, a learning journey
L. Pare Toe, N. Barry, A. D. Ky, S. Kekele, W. Meda, K. Bayala, M. Drabo, D. Thizy and A. Diabate,  Malaria Journal,  20:395. 2021.
Fighting the world’s most deadly animal: the mosquito
M. Rozenbaum,  Understanding Animal Research,  2021.
Structural and mechanistic insights into the complexes formed by Wolbachia cytoplasmic incompatibility factors
Y. Xiao, H. Chen, H. Wang, M. Zhang, X. Chen, J. M. Berk, L. Zhang, Y. Wei, W. Li, W. Cui, F. Wang, Q. Wang, C. Cui, T. Li, C. Chen, S. Ye, L. Zhang, X. Ji, J. Huang, W. Wang, Z. Wang, M. Hochstrasser and H. Yang,  Proceedings of the National Academy of Sciences,  118. 2021.
Meiotic self-pairing of the Psalidodon (Characiformes, Characidae) iso-B chromosome: A successful perpetuation mechanism
D. Silva, C. Araya-Jaime, M. Yamashita, M. R. Vidal, C. Oliveira, F. Porto-Foresti, R. F. Artoni and F. Foresti,  Genetics and Molecular Biology,  44:e20210084. 2021.
Trial suppresses mosquitoes using non-GMO approach
GM Watch,  GM Watch,  2021.
Spatial modelling for population replacement of mosquito vectors at continental scale
N. J. Beeton, A. Wilkins, A. Ickowicz, K. R. Hayes and G. R. Hosack,  bioRxiv,  2021.10.06.463299. 2021.
Gene drive: a faster route to plant improvement
H. A. Siddiqui, T. Harvey-Samuel and S. Mansoor,  Trends in Plant Science,  2021.
Gene drive revolution: How genetically tweaked mosquitoes could tip the balance in the battle to contain malaria
F. Okumu,  Genetic Literacy Project,  2021.
Genome engineering in insects for the control of vector borne diseases
V. E. Hillary and S. A. Ceasar,  Progress in Molecular Biology and Translational Science,  179:197-223. 2021.
Invasive, disease-carrying Aedes aegypti mosquito sterilized with bacteria and eradicated in large-scale trial
CSIRO,  Phys Org,  2021.
Stakeholders call for adoption of emerging technologies to fight Malaria
C. Muchira,  KBC,  2021.
Towards CRISPR/Cas9-based gene drive in the diamondback moth Plutella xylostella
X. Xu, T. Harvey-Samuel, H. Siddiqui, J. Ang, M. A. E. Anderson, C. Reitmayer, E. Lovett, P. T. Leftwich, M. You and L. Alphey,  bioRxiv,  2021.10.05.462963. 2021.
Resistance to a CRISPR-based gene drive at an evolutionarily conserved site is revealed by mimicking genotype fixation
S. Fuchs, W. T. Garrood, A. Beber, A. Hammond, R. Galizi, M. Gribble, G. Morselli, T.-Y. J. Hui, K. Willis, N. Kranjc, A. Burt, A. Crisanti and T. Nolan,  PLOS Genetics,  17. 2021.
Releasing incompatible males drives strong suppression across populations of wild and Wolbachiat-carrying Aedes aegypti in Australia
N. W. Beebe, D. Pagendam, B. J. Trewin, A. Boomer, M. Bradford, A. Ford, C. Liddington, A. Bondarenco, P. J. De Barro, J. Gilchrist, C. Paton, K. M. Staunton, B. Johnson, A. J. Maynard, G. J. Devine, L. E. Hugo, G. Rasic, H. Cook, P. Massaro, N. Snoad, J.,  Proceedings of the National Academy of Sciences,  118:e2106828118. 2021.
Investigation of Developmental Stage/Age, Gamma Irradiation Dose, and Temperature in Sterilization of Male Aedes aegypti (Diptera: Culicidae) in a Sterile Insect Technique Program
B. Ernawan, T. Anggraeni, S. Yusmalinar and I. Ahmad,  Journal of Medical Entomology,  59:320-327. 2021.
Sexual selection can partly explain low frequencies of Segregation Distorter alleles
T. A. Keaney, T. M. Jones and L. Holman,  Proceedings of the Royal Society B: Biological Sciences,  288:20211190. 2021.
Plan for California’s Genetically Modified Mosquitoes Draws Fire
T. Baltz,  Bloomberg Law,  2021.
Life Table of Bactrocera zonata (Saunders) (Diptera: Tephritidae) for Sterile Insect Technique (SIT) in Mauritius
R. D. Bhoyroo, S. Facknath and P. Sookar,  African Entomology,  29:361-369. 2021.
Genetically-modified possums and all-in-one trapping machines: funding for new predator-free studies
A. Allott,  stuff,  2021.
Weltnaturschutzunion sucht Position
Anonymous,  Informationsdienst Gentechnik,  2021.
Calling the latest gene technologies ‘natural’ is a semantic distraction — they must still be regulated
J. A. Heinemann, D. J. Paull, S. Walker and B. Kurenbach,  The Conversation,  2021.
A single mutation weakens symbiont-induced reproductive manipulation through reductions in deubiquitylation efficiency
J. F. Beckmann, K. Van Vaerenberghe, D. E. Akwa and B. S. Cooper,  Proceedings of the National Academy of Sciences,  118:e2113271118. 2021.
New report demands moratorium on gene drives
GM Watch,  GM Watch,  2021.
Gene Drive Organisms: A new dimension of genetic engineering
V. Henn and M. Imken,  Save Our Seeds,  2021.
Microsporidia MB is found predominantly associated with Anopheles gambiae s.s and Anopheles coluzzii in Ghana
J. Akorli, E. A. Akorli, S. N. A. Tetteh, G. K. Amlalo, M. Opoku, R. Pwalia, M. Adimazoya, D. Atibilla, S. Pi-Bansa, J. Chabi and S. K. Dadzie,  Scientific Reports,  11:5. 2021.
Discrete dynamical models on Wolbachia infection frequency in mosquito populations with biased release ratios
Y. Shi and B. Zheng,  Journal of Biological Dynamics,  2021.
Malaria and the future of mosquito control
E. Gonzalez Fernandez,  CATALYST,  2021.
Symbiotic Interactions Between Mosquitoes and Mosquito Viruses
M. Altinli, E. Schnettler and M. Sicard,  Front Cell Infect Microbiol,  11:694020. 2021.
The effect of mating complexity on gene drive dynamics
P. Verma, R. G. Reeves, S. Simon, M. Otto and C. S. Gokhale,  bioRxiv,  2021.09.16.460618. 2021.
Predicting the spread and persistence of genetically modified dominant sterile male mosquitoes
A. Ickowicz, S. D. Foster, G. R. Hosack and K. R. Hayes,  Parasites and Vectors,  14:480. 2021.
Scientists use gene editing tool to target mosquito-spread disease
Medical Research Council,  Phys Org,  2021.
Mosquitoes Sterilized by CRISPR Powered Precision System
A. A. Sarkar,  Genetic Engineering & Biotechnology News,  2021.
Faut-il miser sur le forçage génétique contre les espèces invasives?
P. Minet,  Le Temps,  2021.
To exterminate, or not to: Scientists debate tweaking wild genomes
French Press Agency,  Daily Sabah,  2021.
Evolutionary robustness of killer meiotic drives
P. G. Madgwick and J. B. Wolf,  Evolution Letters,  2021.
New precision-guided sterile insect technique designed to control disease-spreading mosquitoes
E. Henderson,  News Medical Life Sciences,  2021.
Scientists debate promise, peril of tweaking wild genomes
J. Zamora,  Phys Org,  2021.
UCSD Researchers Create Technology To Sterilize Mosquitoes, Reducing Disease
City News Service,  kpbs,  2021.
Genetic engineering tech promises to sterilize disease-spreading mosquitoes
B. Hays,  UPI,  2021.
Genetic Engineering Technology Promises To Sterilize Disease-Spreading Mosquito Populations
D. Gyllhem,  VIGOURTIMES,  2021.
New Technology Designed to Genetically Control Disease-spreading Mosquitoes
M. Aguilera,  UC San Diego News Center,  2021.
Suppressing mosquito populations with precision guided sterile males
M. Li, T. Yang, M. Bui, S. Gamez, T. Wise, N. P. Kandul, J. Liu, L. Alcantara, H. Lee, J. R. Edula, R. Raban, Y. Zhan, Y. Wang, N. DeBeaubien, J. Chen, H. M. Sánchez C, J. B. Bennett, I. Antoshechkin, C. Montell, J. M. Marshall and O. S. Akbari,  Nature Communications,  12:5374. 2021.
Two newly introduced Wolbachia endosymbionts induce cell host differences in competitiveness and metabolic responses
T. P. Li, S. S. Zha, C. Y. Zhou, X. Xia, A. A. Hoffmann and X. Y. Hong,  Appl Environ Microbiol,  Aem0147921. 2021.
A supernumerary “B-sex” chromosome drives male sex determination in the Pachón cavefish, Astyanax mexicanus
B. Imarazene, K. Du, S. Beille, E. Jouanno, R. Feron, Q. Pan, J. Torres-Paz, C. Lopez-Roques, A. Castinel, L. Gil, C. Kuchly, C. Donnadieu, H. Parrinello, L. Journot, C. Cabau, M. Zahm, C. Klopp, T. Pavlica, A. Al-Rikabi, T. Liehr, S. A. Simanovsky, J. Bo,  Current Biology,  2021.
Persistent Spodoptera frugiperda rhabdovirus infection in Sf9 cells is not restricted by Wolbachia wMelPop-CLA and wAlbB strains and is targeted by the RNAi machinery
R. Parry, H. de Malmanche and S. Asgari,  Virology,  563:82-87. 2021.
Wolbachia-Conferred Antiviral Protection Is Determined by Developmental Temperature
E. Chrostek, N. Martins, M. S. Marialva and L. Teixeira,  mBio,  e0292320. 2021.
Controlling Gene Drives
David O'Brochta and Hector Quemada,  GeneConvene Global Collaborative,  2021.
Diverse wMel variants of Wolbachia pipientis differentially rescue fertility and cytological defects of the bag of marbles partial loss of function mutation in Drosophila melanogaster
J. E. Bubnell, P. Fernandez-Begne, C. K. S. Ulbing and C. F. Aquadro,  G3 Genes|Genomes|Genetics,  2021.
Assessment of fitness and vector competence of a New Caledonia wMel Aedes aegypti strain before field-release
N. Pocquet, O. O’Connor, H. A. Flores, J. Tutagata, M. Pol, D. J. Hooker, C. Inizan, S. Russet, J. M. Duyvestyn, E. C. Pacidônio, D. Girault, D. da Silva Gonçalves, M. Minier, F. Touzain, E. Chalus, K. Lucien, F. Cheilan, T. Derycke, S. Laumond, C. P. Sim,  PLOS Neglected Tropical Diseases,  15:e0009752. 2021.
Satellite DNA-mediated diversification of a sex-ratio meiotic drive gene family in Drosophila
C. A. Muirhead and D. C. Presgraves,  Nature Ecology & Evolution,  2021.
The viral era
B. Giese,  EMBO reports,  22:e53229. 2021.
Genetically Modified Mosquitoes — What’s The Real Story?
SPW Staff,  Southeast Product Weekly,  2021.
Mosquito transgenesis for malaria control
S. Dong, Y. Dong, M. L. Simões and G. Dimopoulos,  Trends in Parasitology,  2021.
wMel Wolbachia genome remains stable after 7 years in Australian Aedes aegypti field populations
K. R. Dainty, J. Hawkey, L. M. Judd, E. C. Pacidônio, J. M. Duyvestyn, D. S. Gonçalves, S. Y. Lin, T. B. O'Donnell, S. L. O'Neill, C. P. Simmons, K. E. Holt and H. A. Flores,  Microbial Genomics,  7. 2021.
Unravelling the mystery of female meiotic drive: where we are
F. E. Clark and T. Akera,  Open Biol,  11:210074. 2021.
EPA Seeks Public Comment on Proposed Amendment to Experimental Use Permit for Genetically Engineered Mosquitoes
PCT Staff,  Pest Control Technology,  2021.
UF/IFAS Researchers Explain Science Behind Genetically Modified Mosquitoes
PCT Staff,  Pest Control Technology,  2021.
$1M in funding for project to cull mouse plagues
K. Brown,  University of Adelaide NEWSROOM,  2021.
Gene drive escape from resistance depends on mechanism and ecology
F. Cook, J. J. Bull and R. Gomulkiewicz,  bioRxiv,  2021.08.30.458221. 2021.
Genetically changed mosquitoes could transform Africa’s long fight against malaria
L. Singh,  ForumIAS,  2021.
The international governance of gene drive organisms
F. Rabitz,  Environmental Politics,  2021.
Flavors of Non-Random Meiotic Segregation of Autosomes and Sex Chromosomes
F. Pajpach, T. Wu, L. Shearwin-Whyatt, K. Jones and F. Grützner,  Genes,  12. 2021.
Parallel pathways for recruiting effector proteins determine centromere drive and suppression
T. Kumon, J. Ma, R. B. Akins, D. Stefanik, C. E. Nordgren, J. Kim, M. T. Levine and M. A. Lampson,  Cell,  2021.
Versatile Applications of the CRISPR/Cas Toolkit in Plant Pathology and Disease Management
M. S. Wheatley and Y. N. Yang,  Phytopathology,  111:1080-1090. 2021.
Millions of Lab-Grown Mosquitoes Are Being Released in Guangzhou
F. Yiying,  Sixth Tone,  2021.
New Way to Reduce Diseases Spreading Through Mosquitos
Dr Jayashree,  Medindia,  2021.
Gene Editing Could Render Mosquitos Infertile
U.S. Army DEVCOM Army Research Laboratory Public Affairs,  U.S. Army,  2021.
Sterile males and females can synergistically suppress wild pests targeted by sterile insect technique
Y. Ikegawa, K. Ito, C. Himuro and A. Honma,  Journal of Theoretical Biology,  530. 2021.
Patterns and mechanisms of sex ratio distortion in the Collaborative Cross mouse mapping population
B. A. Haines, F. Barradale and B. L. Dumont,  Genetics,  219:iyab136. 2021.
Cas9-Mediated Gene-Editing in the Black-Legged Tick, Ixodes Scapularis, by Embryo Injection and ReMOT Control.
A. a. P. Sharma, Michael N. and Reyes, Jeremiah B. and Chana, Randeep and Yim, Won C. and Heu, Chan C. and Kim, Donghun and Chaverra-Rodriguez, Duverney and Rasgon, Jason L. and Harrell, Robert A. and Nuss, Andrew B. and Gulia-Nuss, Monika,,  Cell Reports,  2021.
CRISPR/Cas9-based functional characterization of the pigmentation gene ebony in Plutella xylostella
X. Xu, T. Harvey-Samuel, J. Yang, M. You and L. Alphey,  Insect Molecular Biology,  2021.
Africa must not rest until Malaria rests: What is the role of emerging technologies?
R. Oronje,  AFIDEP,  2021.
Insect pest management in the age of synthetic biology
R. Mateos Fernández, M. Petek, I. Gerasymenko, M. Juteršek, Š. Baebler, K. Kallam, E. Moreno Giménez, J. Gondolf, A. Nordmann, K. Gruden, D. Orzaez and N. J. Patron,  Plant Biotechnology Journal,  2021.
The Complex Lives of Mosquitoes: The Key for Malaria Control
F. Okumu,  ISGlobal,  2021.
Attack of the Superweeds
H. C. Brown,  New York Times,  2021.
Mobilizing Mutant Mosquitoes to Fight Malaria
D. Mclaughlin and J. Recht,  United Nations Foundation,  2021.
Identifying Sites for Testing Modified Mosquitoes as a Strategy to Eradicate Malaria
A. Fell,  UC Davis News,  2021.
New mosquito control tools are critical
L. Braack,  Open Access Government,  2021.
Why Genes That Make Mosquitoes Glow Can Help Reduce Vector-Borne Disease
E. Ricciuti,  Entomology Today,  2021.
Genetically Modified Mosquitoes
E. P. Caragata, Y. Lee and E. A. Buckner,  UF IFAS Extension Service,  2021.
Genetic modification could be used to combat invasive crayfish
O. Rudgard,  The Telegraph,  2021.
A Monte Carlo study to investigate the feasibility to use the Moroccan panoramic irradiator in sterile insect technique programs
A. Aknouch, Y. El-ouardi, L. Hamroud, R. Sebihi, M. Mouhib, M. Yjjou, A. Didi and A. Choukri,  Radiation and Environmental Biophysics,  2021.
Oxitec mosquito release expands
T. Java,  Keynews.com,  2021.
Oxitec eyes California for its next GM mosquito pilot projec
J. Conrow,  ,  2021.
Knowing and Controlling: Engineering Ideals and Gene Drive for Invasive Species Control in Aotearoa New Zealand
C. H. Ross,  Nature Remade: Engineering Life, Envisioning Worlds,  2021.
Analysis of the Segregation Distortion of FcRAN1 Genotypes Based on Whole-Genome Resequencing of Fig (Ficus carica L.) Breeding Parents
H. Ikegami, K. Shirasawa, H. Yakushiji, S. Yabe, M. Sato, T. Hayashi, K. Tashiro and H. Nogata,  Frontiers in Plant Science,  12:8. 2021.
Oxitec Advances Process to Bring Friendly™ Mosquito Technology to California to Help Government Agencies Protect Public Health
Oxitec,  Oxitec,  2021.
A common gene drive language eases regulatory process and eco-evolutionary extensions
P. Verma, R. G. Reeves and C. S. Gokhale,  BMC Ecology and Evolution,  21:156. 2021.
Invasive Species Management: Informing Gene Drive Considerations
David O'Brochta and Hector Quemada,  GeneConvene Global Collaborative,  2021.
Red queen’s race: rapid evolutionary dynamics of an expanding family of meiotic drive factors and their hpRNA suppressors
J. Vedanayagam, C.-J. Lin and E. C. Lai,  bioRxiv,  2021.08.05.454923. 2021.
Gene drives gaining speed
E. Bier,  Nature Reviews Genetics,  2021.
The Promise of Genetics and Genomics for Improving Invasive Mammal Management on Islands
B. T. Burgess, R. L. Irvine, G. R. Howald and M. A. Russello,  Frontiers in Ecology and Evolution,  9. 2021.
Invasive Mice and Engineered Genes
W. M. Adams and K. H. Redford,  Yale University Press Blog,  2021.
2021 WHO guidelines on genetically modified mosquitoes
M. Makoni,  The Lancet Microbe,  2:e353. 2021.
Host-associated differentiation of target pests should be assessed before using gene drive as a pest control tool – an opinion
R. F. Medina,  Entomologia Experimentalis et Applicata,  2021.
Scientists eradicate malaria-transmitting mosquitos using genetic engineering which make females infertile in new study which takes one step closer to wiping out the disease worldwide.
C. Ciaccia,  Daily Mail,  2021.
Breakthrough in non-GMO malaria control
C. Robinson and J. Matthews,  GM Watch,  2021.
Genetic engineering may rid world of malaria-transmitting mosquitoes
Y. Steinbuch,  New York Post,  2021.
Transgenic expression of Nix converts genetic females into males and allows automated sex sorting in Aedes albopictus
C. Lutrat, R. P. Olmo, T. Baldet, J. Bouyer and E. Marois,  bioRxiv,  2021.07.28.454191. 2021.
Gene-Drive Technology Could Decimate Malaria-Carrying Mosquitoes–Scientists Use CRISPR to Modify the Insects’ Genes
J. Henry,  Tech Times,  2021.
Malaria-carrying mosquitoes could be bred out of existence using ‘gene drive’ technology
A. Wilkins,  METRO,  2021.
Scientists reveal controversial genetically modified mosquitoes in high-security lab
The Frontier Post,  The Frontier Post,  2021.
Genetic engineering test with mosquitoes ‘may be game changer’ in eliminating malaria
L. Geddes,  The Guardian,  2021.
World Nature Conservation Day: Technology to Forge a Path for Nature Conservation and Communities
P. Becker,  Isand Conservation,  2021.
How An Altered Strand Of DNA Can Cause Malaria-Spreading Mosquitoes To Self-Destruct
R. Stein,  NPR,  2021.
A lab experiment shows that we could engineer malaria-carrying mosquitoes to kill themselves off
A. Micu,  ZME Science,  2021.
Malarial mosquitoes suppressed in experiments that mimic natural environments
H. Dunning,  Phys Org,  2021.
Horizontal Transmission of the Symbiont Microsporidia MB in Anopheles arabiensis
G. Nattoh, T. Maina, E. E. Makhulu, L. Mbaisi, E. Mararo, F. G. Otieno, T. Bukhari, T. O. Onchuru, E. Teal, J. Paredes, J. L. Bargul, D. M. Mburu, E. A. Onyango, G. Magoma, S. P. Sinkins and J. K. Herren,  Frontiers in Microbiology,  12. 2021.
Gene-drive suppression of mosquito populations in large cages as a bridge between lab and field
A. Hammond, P. Pollegioni, T. Persampieri, A. North, R. Minuz, A. Trusso, A. Bucci, K. Kyrou, I. Morianou, A. Simoni, T. Nolan, R. Müller and A. Crisanti,  Nature Communications,  12:4589. 2021.
Oxitec and MosquitoMate in the United States: lessons for the future of gene drive mosquito control
C. E. Schairer, J. Najera, A. A. James, O. S. Akbari and C. S. Bloss,  Pathogens and Global Health,  2021.
Selection of sites for field trials of genetically engineered mosquitoes with gene drive
G. C. Lanzaro, M. Campos, M. Crepeau, A. Cornel, A. Estrada, H. Gripkey, Z. Haddad, A. Kormos and S. Palomares,  Evolutionary Applications,  15. 2021.
Gene drive strategies of pest control in agricultural systems: challenges and opportunities
M. Legros, J. M. Marshall, S. Macfadyen, K. R. Hayes, A. Sheppard and L. G. Barrett,  Evolutionary Applications,  2021.
Resistance to a CRISPR-based gene drive at an evolutionarily conserved site is revealed by mimicking genotype fixation
S. Fuchs, W. Garrood, A. Beber, A. Hammond, R. Galizi, M. Gribble, G. Morselli, T.-Y. Hui, K. Willis, N. Kranjc, A. Burt, T. Nolan and A. Crisanti,  bioRxiv,  2021.
Risk management recommendations for environmental releases of gene drive modified insects
Y. Devos, J. D. Mumford, M. B. Bonsall, D. C. M. Glandorf and H. D. Quemada,  Biotechnology Advances,  2021.
The Aedes aegypti (Diptera: Culicidae) hsp83 Gene Promoter Drives Strong Ubiquitous DsRed and ZsGreen Marker Expression in Transgenic Mosquitoes
S. H. Webster and M. J. Scott,  Journal of Medical Entomology,  2021.
Sex separation of Aedes spp. mosquitoes for sterile insect technique application: a review
B. M. Moran-Aceves, C. F. Marina, A. Dor, P. Liedo and J. Toledo,  Entomologia Experimentalis Et Applicata,  10. 2021.
Wolbachia as translational science: controlling mosquito-borne pathogens
E. P. Caragata, H. L. C. Dutra, P. H. F. Sucupira, A. G. A. Ferreira and L. A. Moreira,  Trends in Parasitology,  2021.
CRISPR/Cas-9 mediated knock-in by homology dependent repair in the West Nile Virus vector Culex quinquefasciatus Say
D.-K. Purusothaman, L. Shackleford, M. A. E. Anderson, T. Harvey-Samuel and L. Alphey,  Scientific Reports,  11:14964. 2021.
A Sterile Solution: How Crispr Could Protect Wild Salmon
L. Abend,  UNDARK,  2021.
GM mosquitoes to fight malaria
I. Khisa,  The INDEPENDENT,  2021.
Using Moderate Transgene Expression to Improve the Genetic Sexing System of the Australian Sheep Blow Fly Lucilia cuprina
Y. Yan, M. E. Williamson and M. J. Scott,  Insects,  11. 2021.
Yes, genetically modified mosquitoes do exist, but they don’t bite and aren’t harmful to humans
E. Jones and M. Chamberlin,  WKYC Studios,  2021.
Combating mosquito-borne diseases using genetic control technologies
G.-H. Wang, S. Gamez, R. R. Raban, J. M. Marshall, L. Alphey, M. Li, J. L. Rasgon and O. S. Akbari,  Nature Communications,  12:4388. 2021.
Genetically Modifying Bats Could Prevent the Next Pandemic, Scientists Say
G. Dutton,  BioSpace,  2021.
The Possible Role of Microorganisms in Mosquito Mass Rearing
L. Chersoni, A. Checcucci, M. Malfacini, A. Puggioli, F. Balestrino, M. Carrieri, I. Piunti, M. L. Dindo, P. Mattarelli and R. Bellini,  Insects,  12. 2021.
Sterile Insect Technique (SIT) and Its Applications
K. Bourtzis and M. J. B. Vreysen,  Insects,  12. 2021.
Gene Drives – Engineering the Wild
L. Sharratt,  Sentinel,  2021.
Targeting Conserved Sequences Circumvents the Evolution of Resistance in a Viral Gene Drive against Human Cytomegalovirus
M. Walter, R. Perrone, E. Verdin and F. Goodrum,  Journal of Virology,  95:e00802-21. 2021.
Unique effort underway to control deadly mosquitos in Florida Keys
K. Corso and L. Aguirre,  Local10.com,  2021.
Mice Plague Eastern Australia in Record Numbers
B. Nogrady,  The Scientist,  2021.
Autocatalytic-protection for an unknown locus CRISPR-Cas countermeasure for undesired mutagenic chain reactions
E. Schonfeld, E. Schonfeld and D. Schonfeld,  Journal of Theoretical Biology,  528:110831. 2021.
Part of ‘master plan’: Researchers receive grant to fund research on malaria
L. Huang,  The Daily Californian,  2021.
Earth system interventions as technologies of the Anthropocene
J. L. Reynolds,  Environmental Innovation and Societal Transitions,  40:132-146. 2021.
Africa Turning to Gene Drive Technology for Malaria Elimination
M. Hearty,  Science Africa,  2021.
Improvement of the Mass-Rearing Protocols for the South American Fruit Fly for Application of the Sterile Insect Technique
T. Mastrangelo, A. Kovaleski, B. Maset, M. D. Costa, C. Barros, L. A. Lopes and C. Caceres,  Insects,  12. 2021.
A new tool in the global fight against malaria
S. Laux,  Brighter World,  2021.
West African countries working together to develop framework to regulate genetically engineered mosquitos: Target Malaria
Anonymous,  Global News,  2021.
Marshall Lab receives Gates grant for genetics-based malaria mosquito control
Berkeley Public Health,  Berkeley Public Health,  2021.
Fighting disease: How are genetically engineered mosquitoes regulated?
A. Julie,  Global News,  2021.
Comparative response to post-production process of two Anastrepha ludens strains: Application in the sterile insect technique
J. Arredondo, J. F. Aguirre-Medina, J. S. Meza, J. Cancino and F. Diaz-Fleischer,  Journal of Applied Entomology,  11. 2021.
Scientists develop new technology that gives greater control for managing malaria mosquitoes
Keele University,  Phy Org,  2021.
Distinct spermiogenic phenotypes underlie sperm elimination in the Segregation Distorter meiotic drive system
M. Herbette, X. L. Wei, C. H. Chang, A. M. Larracuente, B. Loppin and R. Dubruille,  PLOS Genetics,  17:26. 2021.
Effect of the timing of pupal irradiation on the quality and sterility of oriental fruit flies (Diptera: Tephritidae) for use in Sterile Insect Technique
T. J. Fezza, P. A. Follett and T. E. Shelly,  Applied Entomology and Zoology,  8. 2021.
Effect of the timing of pupal irradiation on the quality and sterility of oriental fruit flies (Diptera: Tephritidae) for use in Sterile Insect Technique
T. J. Fezza, P. A. Follett and T. E. Shelly,  Applied Entomology and Zoology,  8. 2021.
Gene drive that results in addiction to a temperature sensitive version of an essential gene triggers population collapse in Drosophila
G. Oberhofer, B. Hay and T. Ivy,  bioRxiv,  2021.07.03.451005. 2021.
Remating in Ceratitis capitata sterile males: Implications in sterile insect technique programmes
M. Catala-Oltra, E. Llacer, O. Dembilio, I. Pla, A. Urbaneja and M. Perez-Hedo,  Journal of Applied Entomology,  8. 2021.
Gene Drive: The Technology and its Potentials for Biodiversity Conservatio
Z. Bugnosen,  Science Speaks,  2021.
Could editing the genomes of bats prevent future coronavirus pandemics? Two scientists think it’s worth a try
E. C. Hayden,  STAT,  2021.
Preventing COVID-59
Y. Erlich and D. Douek,  github,  2021.
INSIDER: alignment-free detection of foreign DNA sequences
A. P. Tay, B. Hosking, C. Hosking, D. C. Bauer and L. O. W. Wilson,  Computational and Structural Biotechnology Journal,  19:3810-3816. 2021.
The (Losing) Battle Against Mosquitoes In Texas
J. Clayton,  Texas Public Radio,  2021.
A wAlbB Wolbachia&lt transinfection displays stable phenotypic effects across divergent Aedes aegypti mosquito backgrounds
P. A. Ross, X. Gu, K. L. Robinson, Q. Yang, E. Cottingham, Y. Zhang, H. L. Yeap, X. Xu, N. M. Endersby-Harshman and A. A. Hoffmann,  bioRxiv,  2021.06.25.450002. 2021.
A genetically encoded anti-CRISPR protein constrains gene drive spread and prevents population suppression
C. Taxiarchi, A. Beaghton, N. I. Don, K. Kyrou, M. Gribble, D. Shittu, S. P. Collins, C. L. Beisel, R. Galizi and A. Crisanti,  Nature Communications,  12:3977. 2021.
UC San Diego scientists develop the first CRISPR/Cas9-based gene drive in plants
M. Aguilera,  UC San Diego News Center,  2021.
Using gene drives to control malaria
A. Fell,  Daily News,  2021.
A conditional female lethal system for genetic suppression of the global fruit crop pest Drosophila suzukii
F. Li, A. Yamamoto, E. J. Belikoff, A. Berger, E. H. Griffith and M. J. Scott,  Pest Management Science,  2021.
A transgenic female killing system for the genetic control of Drosophila suzukii
M. F. Schetelig, J. Schwirz and Y. Yan,  Scientific Reports,  11:12938. 2021.
Potential use of gene drive modified insects against disease vectors, agricultural pests and invasive species poses new challenges for risk assessment
Y. Devos, J. D. Mumford, M. B. Bonsall, A. M. Camargo, L. G. Firbank, D. C. M. Glandorf, F. Nogué, K. Paraskevopoulos and E. A. Wimmer,  Critical Reviews in Biotechnology,  2021.
Patterns and Mechanisms of Sex Ratio Distortion in the Collaborative Cross Mouse Mapping Population
B. A. Haines, F. Barradale and B. L. Dumont,  bioRxiv,  2021.
Why Flight Testing is an Important Step in Sterile Insect Technique
E. Ricciuti,  Entomology Today,  2021.
Selective inheritance of target genes from only one parent of sexually reproduced F1 progeny in Arabidopsis
T. Zhang, M. Mudgett, R. Rambabu, B. Abramson, X. Dai, T. P. Michael and Y. Zhao,  Nature Communications,  12:3854. 2021.
Manipulated Mosquitoes Cut Dengue by 77%
T. Hayes,  Healthcare Packaging,  2021.
Why Are Gates and Pentagon Releasing GMO Mosquitoes in Florida Keys?
F. W. Engdahl,  LewRockwell.com,  2021.
Haldane’s duel: intragenomic conflict, selfish Y chromosomes and speciation
S. W. Roy,  Trends in Genetics,  2021.
Sustainable Food Production: The Contribution of Genome Editing in Livestock
A. Menchaca,  Sustainability,  13. 2021.
Evaluating Flight Performance of Mass-Reared and Irradiated Navel Orangeworm (Lepidoptera: Pyralidae) for Sterile Insect Technique
J. Reger, J. A. Wenger, G. Brar, C. Burks and H. Wilson,  Journal of Economic Entomology,  2021.
Population modification strategies for malaria vector control are uniquely resilient to observed levels of gene drive resistance alleles
G. C. Lanzaro, H. M. Sánchez C, T. C. Collier, J. M. Marshall and A. A. James,  BioEssays,  2021.
ReMOT Control Delivery of CRISPR-Cas9 Ribonucleoprotein Complex to Induce Germline Mutagenesis in the Disease Vector Mosquitoes Culex pipiens pallens (Diptera: Culicidae)
X. X. Li, Y. Xu, H. B. Zhang, H. T. Yin, D. Zhou, Y. Sun, L. Ma, B. Shen and C. L. Zhu,  Journal of Medical Entomology,  58:1202-1209. 2021.
Wolbachia-mediated sterility suppresses Aedes aegypti populations in the urban tropics
Project Wolbachia-Singapore Consortium,  medRxiv,  2021.
CRISPR-mediated knock-in of transgenes into the malaria vector Anopheles funestus
C. Quinn, A. Anthousi, C. Wondji and T. Nolan,  G3 Genes Genomes Genetics,  11. 2021.
Dengue fever: Upstaged but not outmatched by COVID-19
C. E. Baclig,  INQUIRER.NET,  2021.
Genetically Modified Mosquitoes; ‘Truth Like Oil’ Novel
Here and Now,  WBUR,  2021.
Selfish DNA: how new gene technology could stop the advance of mice
M. McMillan,  Tentenfield Star,  2021.
Dengue Infections Can Be Sharply Reduced With Wolbachia Bacteria
J. Stone,  Medscape,  2021.
Making mosquitoes to fight mosquitoes to prevent dengue
A. George,  Times of India,  2021.
Stable high-density and maternally inherited Wolbachia infections in Anopheles moucheti and Anopheles demeilloni mosquitoes
T. Walker, S. Quek, C. L. Jeffries, J. Bandibabone, V. Dhokiya, R. Bamou, M. Kristan, L. A. Messenger, A. Gidley, E. A. Hornett, E. R. Anderson, C. Cansado-Utrilla, S. Hegde, C. Bantuzeko, J. C. Stevenson, N. F. Lobo, S. C. Wagstaff, C. A. Nkondjio, S. R.,  Current Biology,  31:2310. 2021.
Temperature-Inducible Precision Guided Sterile Insect Technique
N. P. Kandul, J. Liu and O. S. Akbari,  bioRxiv,  2021.06.14.448312. 2021.
The First Genetically Modified Mosquitoes Have Just Been Released in The US
Admin,  Science World,  2021.
Wolbachia-Infected Mosquitoes Stymie Dengue’s Spread: Study
S. Williams,  The Scientist,  2021.
Using Wolbachia to Eliminate Dengue: Will the Virus Fight Back?
M. Edenborough Kathryn, A. Flores Heather, P. Simmons Cameron, E. Fraser Johanna and C. Pierson Ted,  Journal of Virology,  95:e02203-20. 2021.
Dengue Fever Cut Down by 77% With Groundbreaking Bacteria-Armed Mosquitoes
M. Davis,  The Science Times,  2021.
Mosquito ‘bacteria hack’ nearly eliminates dengue fever and could save millions of lives
A. Wilkins,  METRO,  2021.
‘Miraculous’ mosquito hack cuts dengue by 77%
J. Gallagher,  BBC,  2021.
Modified mosquitoes reduce dengue cases by 77% in Indonesia experiment
M. Fox,  CNN,  2021.
Efficacy of Wolbachia-Infected Mosquito Deployments for the Control of Dengue
A. Utarini, C. Indriani, R. A. Ahmad, W. Tantowijoyo, E. Arguni, M. R. Ansari, E. Supriyati, D. S. Wardana, Y. Meitika, I. Ernesia, I. Nurhayati, E. Prabowo, B. Andari, B. R. Green, L. Hodgson, Z. Cutcher, E. Rancès, P. A. Ryan, S. L. O’Neill, S. M. Dufau,  New England Journal of Medicine,  384:2177-2186. 2021.
A Pivotal Mosquito Experiment Could Not Have Gone Better
E. Yong,  The Atlantic,  2021.
How AI and mosquito sex parties can save the world
D. Takahashi,  Ventura Beat,  2021.
Mosquitoes armed with virus-fighting bacteria sharply curb dengue infections, hospitalizations
K. Servick,  Science,  2021.
Study demonstrates ‘exciting potential’ of Wolbachia-infected mosquitoes to control dengue
G. Gallagher,  Healio,  2021.
‘Nigeria has capacity for safe application of modern biotechnology’
M. Adewale,  The Guardian,  2021.
European Parliament calls for ban on gene drive technology
Save Our Seeds,  Save Our Seeds,  2021.
Fine-scale estimation of key life-history parameters of malaria vectors: implications for next-generation vector control technologies
A. L. Morris, A. Ghani and N. Ferguson,  Parasites and Vectors,  14:311. 2021.
Living With the Limits of Our New Clerisy’s Knowledge
R. Fernandez,  PJ Media,  2021.
Vector control: Discovery of Wolbachia in malaria vectors
P. A. Ross and A. A. Hoffmann,  Current Biology,  31:R738-R740. 2021.
Victory: NSW Government Invests in Humane Mice Control!
PETA Australia,  PETA Australia,  2021.
Sequence of the supernumerary B chromosome of maize provides insight into its drive mechanism and evolution
N. Blavet, H. Yang, H. Su, P. Solanský, R. N. Douglas, M. Karafiátová, L. Šimková, J. Zhang, Y. Liu, J. Hou, X. Shi, C. Chen, M. El-Walid, M. E. McCaw, P. S. Albert, Z. Gao, C. Zhao, G. Ben-Zvi, L. Glick, G. Kol, J. Shi, J. Vrána, H. Šimková, J. C. Lamb,,  Proceedings of the National Academy of Sciences,  118:e2104254118. 2021.
Nondisjunction and unequal spindle organization accompany the drive of Aegilops speltoides B chromosomes
D. Wu, A. Ruban, J. Fuchs, J. Macas, P. Novák, M. Vaio, Y. Zhou and A. Houben,  New Phytologist,  223:1340-1352. 2021.
Gene tech to prevent crossbreeding could safely harness the power of gene drives
I. l. Guillou,  The Science Advisory Board,  2021.
New biocontrol research to help prevent mice plagues
Anonymous,  The National Tribune,  2021.
Gene drive could be a game changer for future mouse control.
Anonymous,  Centre for Invasive Species Solutions,  2021.
“Gene Drive” Technology To Control Mouse Invasions | Liverpool City Champion
T. Carrington,  Liverpool IL,  2021.
Australia plots biological warfare to eradicate rampaging ‘mouse plague’
J. Smyth,  Financial Times,  2021.
Bill Gates Releasing Genetically Modified Mosquitoes in Florida? Here’s the Whole Story
M. Dapcevich,  Snopes,  2021.
Scientists design new gene drive to stop the transmission of devastating diseases
E. Henderson,  AZO Life Sciences,  2021.
Mouse plague control hopes raised with funding for genetic biocontrol research
Anonymous,  From Press,  2021.
Genetically modified mosquitoes and Africa
S. Bagcchi,  Sci Dev Net,  2021.
ISAAA Webinar: What is Gene Drive?
ISAAA,  ISAAA,  2021.
Mutant mosquitoes carrying ‘death gene’ released as ‘bio-engineered’ insects terrify
J. Caven,  Daily Star,  2021.
‘Death gene’ in genetically modified male mosquitoes
J. Goddard,  The Times,  2021.
Synthetic SPECIES developed for use as a confinable gene drive
University of California - San Diego,  ScienceDaily,  2021.
‘Gene drive’ tech to control mice plagues
AAP,  Countryman,  2021.
Engineered reproductively isolated species drive reversible population replacement
A. Buchman, I. Shriner, T. Yang, J. Liu, I. Antoshechkin, J. M. Marshall, M. W. Perry and O. S. Akbari,  Nature Communications,  12:3281. 2021.
New CRISPR Tools Can Help Contain Mosquito Disease Transmission
Anonymous,  labcompare,  2021.
African Experts Welcome WHO Guidance on Ethics, Standards, and Governance of Genetically Modified Mosquito Research
E. Nakkazi,  Health Policy Watch,  2021.
Genetically Altered Mosquitoes Target Deadly Dengue Fever and Zika
R. L. Hotz,  Wall Street Journal,  2021.
Researchers report reference genome for maize B chromosome
Chinese Academy of Sciences,  Phys Org,  2021.
What is wrong in extinguishing a species? Charting the Ethical Challenges of using Gene-Drive Technologies to eradicate A. gambiae vector populations
M. Annoni and T. Pievani,  Biolaw Journal-Rivista Di Biodiritto,  2021.
Analysis of off-target effects in CRISPR-based gene drives in the human malaria mosquito
W. T. Garrood, N. Kranjc, K. Petri, D. Y. Kim, J. A. Guo, A. M. Hammond, I. Morianou, V. Pattanayak, J. K. Joung, A. Crisanti and A. Simoni,  Proceedings of the National Academy of Sciences,  118:e2004838117. 2021.
Experimental demonstration of tethered gene drive systems for confined population modification or suppression
M. Metzloff, E. Yang, S. Dhole, A. G. Clark, P. W. Messer and J. Champer,  bioRxiv,  2021.05.29.446308. 2021.
First evidence of deviation from Mendelian proportions in a conservation programme
C. E. Grueber, K. A. Farquharson, B. R. Wright, G. P. Wallis, C. J. Hogg and K. Belov,  Molecular Ecology,  13. 2021.
Improving mosquito control strategies with population genomics
T. L. Schmidt, N. M. Endersby-Harshman and A. A. Hoffmann,  Trends in Parasitology,  37:907-921. 2021.
WHO releases new guidance for deployment of genetically modified mosquitoes
E. Henderson,  News Medical Life Sciences,  2021.
Researchers Create New CRISPR Tools to Help Contain Mosquito Disease Transmission
M. Aguilera,  UC San Diego News Center,  2021.
New CRISPR tools help contain mosquito disease transmission: Genetics toolkit targets less researched Culex mosquitoes, which transmit West Nile virus and avian malaria.
University of California - San Diego,  ScienceDaily,  2021.
A homing suppression gene drive with multiplexed gRNAs maintains high drive conversion efficiency and avoids functional resistance alleles
E. Yang, M. Metzloff, A. M. Langmüller, A. G. Clark, P. W. Messer and J. Champer,  bioRxiv,  2021.05.27.446071. 2021.
Mosquitoes are deadly pests, genetically-modified mosquitoes could help stop disease
T. Browne,  ClickOrlando,  2021.
A Novel Genetic Sexing Strain of Anastrepha Ludens for Cost-Effective Sterile Insect Technique Applications: Improved Genetic Stability and Rearing Efficiency
E. Ramírez-Santos, P. Rendon, G. Gouvi, A. Zacharopoulou, K. Bourtzis, C. Cáceres and K. Bloem,  Insects,  12. 2021.
Genetic engineering may help control disease-carrying mosquitoes
Anonymous,  The Economist,  2021.
Suppression of female fertility in Aedes aegypti with a CRISPR-targeted male-sterile mutation
J. Chen, J. Luo, Y. Wang, A. S. Gurav, M. Li, O. S. Akbari and C. Montell,  Proceedings of the National Academy of Sciences,  118:e2105075118. 2021.
The origin of island populations of the African malaria mosquito, Anopheles coluzzii
M. Campos, M. Hanemaaijer, H. Gripkey, T. C. Collier, Y. S. Lee, A. J. Cornel, J. Pinto, D. Ayala, H. Rompao and G. C. Lanzaro,  Communications Biology,  4:9. 2021.
Oxitec takes on growing cattle tick challenges
Annonymous,  The Cattle Site,  2021.
Pest reduction with female killers and sterile males
L. Mertz,  Good Fruit Grower,  2021.
Genetically Modified Mosquitoes: What to Know
N. Pathak,  WebMD,  2021.
Sterilizing skeeters using CRISPR/Cas9
H. Tasoff,  Phy Org,  2021.
Q&A: WHO updates guidance on testing genetically modified mosquitoes
E. N. Dreisbach,  Healio,  2021.
Why the EU should back research into gene drive – even if Europe never uses it
R. Müller,  The Brussels Times,  2021.
Scientists want to alter rodent genes to prevent mice plagues
P. Hannon,  The Sydney Morning Herald,  2021.
MGDrivE 2: A simulation framework for gene drive systems incorporating seasonality and epidemiological dynamics
S. L. Wu, J. B. Bennett, C. H. Sánchez, A. J. Dolgert, T. M. León and J. M. Marshall,  PLoS Comput Biol,  17:e1009030. 2021.
Malaria-Resistant Mosquitoes (Diptera: Culicidae); The Principle is Proven, But Will the Effectors Be Effective?
Z. N. Adelman and B. B. Kojin,  Journal of Medical Entomology,  58:1997-2005. 2021.
Genetically modified mosquitoes; WHO issues new guidance for research
DTE Staff,  Down To Earth,  2021.
Burkina Faso Testing Genetically Modified Mosquitoes to Curb Malaria
H. Wilkins,  Voice of America,  2021.
Florida Environmental Group Says GMO Mosquitoes Fall Short on Scientific Rigor
C. Drukier,  NTD,  2021.
Optimized CRISPR tools and site-directed transgenesis towards gene drive development in Culex quinquefasciatus mosquitoes
X. Feng, V. López Del Amo, E. Mameli, M. Lee, A. L. Bishop, N. Perrimon and V. M. Gantz,  Nature Communications,  12:2960. 2021.
WHO issues new guidance for research on genetically modified mosquitoes to fight malaria and other vector-borne diseases
WHO,  reliefweb,  2021.
Targeting conserved sequences circumvents the evolution of resistance in a viral gene drive against human cytomegalovirus
M. Walter, R. Perrone and E. Verdin,  Journal of virology,  2021.
Guidance framework for testing of genetically modified mosquitoes, second edition
WHO,  WHO-TDR,  2021.
Small-Cage Laboratory Trials of Genetically-Engineered Anopheline Mosquitoes
R. Carballar-Lejarazú, T. B. Pham, V. Bottino-Rojas, A. Adolfi and A. A. James,  J Vis Exp,  2021.
Genetic Technologies for Sustainable Management of Insect Pests and Disease Vectors
S. Grilli, R. Galizi and C. Taxiarchi,  Sustainability,  13. 2021.
Sterile Insect Technique: Successful Suppression of an Aedes aegypti Field Population in Cuba
R. Gato, Z. Menendez, E. Prieto, R. Argiles, M. Rodriguez, W. Baldoquin, Y. Hernandez, D. Perez, J. Anaya, I. Fuentes, C. Lorenzo, K. Gonzalez, Y. Campo and J. Bouyer,  Insects,  12:13. 2021.
Genetically Modified Mosquitoes Take Flight to Fight Invasive Species in Florid
T. Machemer,  Smithosonian Magazine,  2021.
Genetically modified mosquitoes may help scientists swat dreaded midge
W. Jean,  The Times,  2021.
British Firm Develops ‘Friendly’ Fall Armyworm To Save Crops
J. Choubey,  Zenger,  2021.
Bliotech firm behind CRISPR mosquitoes is working on other gene-hacked creatures
D. Robitzski,  Futurism,  2021.
First Genetically Modified Mosquitoes Released in U.S. Are Hatching Now
D. Coffey,  Scientific American,  2021.
In a World-First, Genetically Modified Mosquitoes Are Hatching in the US
B. Bergan,  INTERSTING ENGINEERING,  2021.
The U.S.’s first open-air genetically modified mosquitoes have taken flight
S. Milius,  Science News,  2021.
Experiments confirm a dispersive phenotype associated with a natural gene drive system
J.-N. Runge and A. K. Lindholm,  Royal Society Open Science,  8:202050. 2021.
Use of genetically modifed mosquitoes to minimize the burden of diseases casused by mosquitoes in South Texas.
MDN Staff,  MegaDoctor News,  2021.
New genetic copycatchers detect efficient and precise CRISPR editing in a living organism
UNIVERSITY OF CALIFORNIA - SAN DIEGO,  UNIVERSITY OF CALIFORNIA - SAN DIEGO,  2021.
CopyCatchers are versatile active genetic elements that detect and quantify inter-homolog somatic gene conversion
Z. Li, N. Marcel, S. Devkota, A. Auradkar, S. M. Hedrick, V. M. Gantz and E. Bier,  Nature Communications,  12:2625. 2021.
Monster Mosquito–Why the Technology of Genetically Modified Mosquitoes is Dangerous and Should Be Stopped Worldwide
B. Dogra,  counter currents,  2021.
Florida releases genetically modified mosquitoes in hopes to reduce spread of disease
A. Fahim,  Reuters,  2021.
Why Florida is releasing genetically modified mosquitoes
M. Murphy,  The Telegraph,  2021.
Genetically Modified Mosquitoes Have Come to the U.S. Will They Work?
A. de la Garza,  TIME,  2021.
Bill Gates finances the creation of transgenic mosquitoes
Explica.co,  explica,  2021.
Genetically Modified Mosquitoes Released In US For First Time To Combat Disease
J. Van Zijl,  IFL Science,  2021.
Cloning wildlife and editing their genes to protect them and us.
H. Thomasy,  NEO-LIFE,  2021.
Genetically Modified Mosquitoes Released In Florida ‘Jurassic Park Experiment’
D. Richardson,  UNILAD,  2021.
Gravitas: Genetically modified mosquitoes arrive in Florida
P. Sharma,  WION,  2021.
Reengineered mosquitoes released in Florida pilot program
S. W. Tan,  The Washington Times,  2021.
A natural symbiotic bacterium drives mosquito refractoriness to Plasmodium infection via secretion of an antimalarial lipase
H. Gao, L. Bai, Y. M. Jiang, W. Huang, L. L. Wang, S. G. Li, G. D. Zhu, D. Q. Wang, Z. H. Huang, X. S. Li, J. Cao, L. B. Jiang, M. Jacobs-Lorena, S. Zhan and S. B. Wang,  Nature Microbiology,  25. 2021.
First genetically modified mosquitoes released in US
N. Lanese,  LiveScience,  2021.
Selfish gene leaves bacteria behind
A. York,  Nature Reviews Microbiology,  2021.
Bill Gates-backed startup releases millions of genetically modified mosquitoes
ENTREPRENEUR STAFF,  Entrepreneur,  2021.
First US Field Test of GM Mosquitoes Begins in Florida
C. Wilcox,  The Scientist,  2021.
The first transgenic mosquitoes were releaseed in the United States.
D. Davis,  Prudent Press Agency,  2021.
The Bill Gates Corporation, Backed by Bill Gates, Releases Thousands of Genetically Modified Mosquitoes
T. Meeks,  Aviation Analysis,  2021.
Sterile Insect Technique Programme against Mediterranean Fruit Fly in the Valencian Community (Spain)
I. Plá, J. García de Oteyza, C. Tur, M. Á. Martínez, M. C. Laurín, E. Alonso, M. Martínez, Á. Martín, R. Sanchis, M. C. Navarro, M. T. Navarro, R. Argilés, M. Briasco, Ó. Dembilio and V. Dalmau,  Insects,  12. 2021.
Next gen insect control
E. Unglesbee,  Progressive Farmer,  2021.
Stable isotopes for reliable identification of wild and mass-reared Queensland fruit flies in sterile insect technique programs
B. Mainali, A. S. Andrew, P. W. Taylor and P. Rempoulakis,  Journal of Pest Science,  14. 2021.
Living in the endosymbiotic world of Wolbachia: A centennial review
R. Kaur, J. D. Shropshire, K. L. Cross, B. Leigh, A. J. Mansueto, V. Stewart, S. R. Bordenstein and S. R. Bordenstein,  Cell Host and Microbe,  29:879-893. 2021.
Genetically modified mosquitos: Biohacking for disease prevention.
D. Maloney,  HACKADAY,  2021.
First genetically modified mosquitoes released in the United States
E. Waltz,  Nature,  2021.
Genetic Manipulation of Ticks: A Paradigm Shift in Tick and Tick-Borne Diseases Research
A. Nuss, A. Sharma and M. Gulia-Nuss,  Frontiers in Cellular and Infection Microbiology,  11:7. 2021.
Oxitec releases first genetically modified mosquitoes in U.S.
J. Knutson,  Axios,  2021.
Mechanistically comparing reproductive manipulations caused by selfish chromosomes and bacterial symbionts
E. Dalla Benetta, O. S. Akbari and P. M. Ferree,  Heredity,  126:707-716. 2021.
Armyworm meets Friendly moth
M. Francisco,  Nature Biotechnology,  39:532-532. 2021.
Genetically modified mosquitoes have landed in the Keys. Here’s what you need to know
G. Filosa,  Miami Herald,  2021.
The legal regulation of gene drive technologies
C. Elves,  Univeristy of Oxford,  2021.
What Are GMO Mosquitoes and What Is Their Purpose?
A. Krosofsky,  GREENMATTERS,  2021.
Genetically modified mosquitoes | Connect the Dots
thv11,  THV11,  2021.
‘Home to GMO Mosquitoes?!’ Florida Unleashes a Billion Lab Grown Mosquitoes
Anonymous,  B and T MAGAZINE,  2021.
The Release of 1 Billion Exterminator Mosquitoes Has Begun
D. Noor,  Gizmodo,  2021.
First-ever US release of genetically modified mosquitoes begins in Florida Keys
S. LaMotte,  CNN,  2021.
A gene drive does not spread easily in populations of the honey bee parasite Varroa destructor
N. R. Faber, A. B. Meiborg, G. R. McFarlane, G. Gorjanc and B. A. Harpur,  bioRxiv,  2021.04.30.442149. 2021.
Driving genetic destruction
Anonymous,  Alliance for Natural Health,  2021.
The first genetically modified mosquitoes released in the U.S. to buzz in the Florida Keys
K. Weintraub,  USA Today,  2021.
A Billion Lab-Grown Mosquitos Are Being Released and People Are Freaking Out
V. Kipnis,  Vice,  2021.
The mosquito-bite fight begins
F. Billingsley,  Click2Houston,  2021.
Modeling and analysis of the implementation of the Wolbachia incompatible and sterile insect technique for mosquito population suppression.
B. Zheng, J. S. Yu and J. Li,  Siam Journal on Applied Mathematics,  81:718-740. 2021.
Nearly 144K GMO Mosquitoes to be Released in South Florida: What We Know
J. Prigeon,  6 South Florida,  2021.
Selection of Sites for Field Trials of Genetically Engineered Mosquitoes with Gene Drive
G. C. Lanzaro, M. Campos, M. Crepeau, A. Cornel, A. Estrada, H. Gripkey, Z. Haddad, A. Kormos, S. Palomares and W. Sharpee,  bioRxiv,  2021.04.28.441877. 2021.
Nation’s first trial of genetically modified mosquitoes starts in Florida Keys
S. Brock,  TODAY,  2021.
Florida Unleashing Thousands of Mosquitoes
Anonymous,  The Weather Channel,  2021.
GMO mosquitoes to be released in Florida Keys
NBC News,  WRCBtv,  2021.
Nearly 150,000 Gene-Hacked Mosquitoes to Be Unleashed in Florida
S. Kim,  Newsweek,  2021.
Genetically modified mosquito larvae to be released in Florida Keys
E. Helmore,  The Guardian,  2021.
Florida set to release swarms of GMO mosquitoes as residents decry ‘criminal experiment’ by Bill Gates-backed biotech
rt com,  rt com,  2021.
“Maskandi experience”: exploring the use of a cultural song for community engagement in preparation for a pilot Sterile Insect Technique release programme for malaria vector control in KwaZulu-Natal Province, South Africa 2019
P. N. Manana, S. Jewett, J. Zikhali, D. Dlamini, N. Mabaso, Z. Mlambo, R. Ngobese and G. Munhenga,  Malaria Journal,  20:11. 2021.
BUZZ OFF Florida residents blast pest control ‘TERRORISTS’ over plans to unleash a BILLION mutant mosquitoes in the Keys
J. Bentley-York,  The SUN,  2021.
Florida to release a billion genetically modified mosquitoes and people are worried
B. Robinson,  indy100,  2021.
Thousands of genetically modified mosquitoes being released in Florida
T. Lapin,  New York Post,  2021.
Halt This Nightmare’: Alarm as Florida Set to Begin Release of Genetically Engineered Mosquitoes
J. Johnson,  Common Dreams,  2021.
Florida residents claim ‘pest control trial’ that will release up to a BILLION genetically engineered mosquitos in the Keys to reduce species carrying diseases is ‘TERRORISM’
S. Liberatore,  Daily Mail,  2021.
Coalition Against GMO Mosquito Condemns Release of Genetically Engineered Mosquitoes
GMO Free USA,  3BL CSRwire,  2021.
Nation’s First Trial Of Genetically Modified Mosquitoes Starts In Florida Keys
N. Klingener,  WLRN,  2021.
Does Gene Technology Offer Potential to Wipe Out Malaria?
Anonymous,  AFIDEP,  2021.
A functional bacteria-derived restriction modification system in the mitochondrion of a heterotrophic protist
D. A.-O. Milner, J. A.-O. Wideman, C. A.-O. Stairs, C. D. Dunn and T. A.-O. Richards,  PLoS Biology,  2021.
Major fly pest genetically modified in lab to produce more males
H. Dunning,  Imperial College London,  2021.
Genetically-engineered mosquitoes set for release in Florida Keys: Science offers tool to fight Zika, dengue, malaria but critics claim it’s unnecessary and potentially dangerous
J. Musto,  Genetic Literacy Project,  2021.
Selfish chromosomal drive shapes recent centromeric histone evolution in monkeyflowers
F. R. Finseth, T. C. Nelson and L. Fishman,  PLOS Genetics,  17:e1009418. 2021.
Development of Sterile Insect Technique for Control of the European Grapevine Moth, Lobesia botrana, in Urban Areas of Chile
G. S. Simmons, M. C. Salazar Sepulveda, E. A. Fuentes Barrios, M. Idalsoaga Villegas, R. E. Medina Jimenez, A. R. Garrido Jerez, R. Henderson and H. Donoso Riffo,  Insects,  12. 2021.
An introgressed gene causes meiotic drive in Neurospora sitophila
J. Svedberg, A. A. Vogan, N. A. Rhoades, D. Sarmarajeewa, D. J. Jacobson, M. Lascoux, T. M. Hammond and H. Johannesson,  Proceedings of the National Academy of Sciences of the United States of America,  118:9. 2021.
CRISPR may help curb malaria by altering a mosquito’s gut genes, new study suggests
Cornell Alliance for Science,  Genetic Literacy Project,  2021.
Fighting mosquitoes with mosquitoes
W. Feng,  The Daily Targum,  2021.
CRISPR-Cas and Its Wide-Ranging Applications: From Human Genome Editing to Environmental Implications, Technical Limitations, Hazards and Bioethical Issues
R. Piergentili, A. Del Rio, F. Signore, F. U. Ronchi, E. Marinelli and S. Zaami,  Cells,  10:24. 2021.
Eliminating malaria via a simple genetic modification
S. Gunn,  Front Line Genomics,  2021.
UK biotech firm’s 750 mn GM mosquitoes will mate with females off Florida, sow a deadly gene
S. Ramesh,  The Print,  2021.
This Malaria Preventing Mosquito Is Not A GMO But Is A Science Boost For Nature – Will Activists Want To Block It?
H. Campbell,  science 2.0,  2021.
Estimates of the population size and dispersal range of Anopheles arabiensis in Northern KwaZulu-Natal, South Africa: implications for a planned pilot programme to release sterile male mosquitoes
M. L. Kaiser, O. R. Wood, D. Damiens, B. D. Brooke, L. L. Koekemoer and G. Munhenga,  Parasites and Vectors,  14:18. 2021.
Florida to release genetically modified mosquitoes to fight disease
K. Jones,  WND,  2021.
Dengue fever and Zika The first genetically modified mosquitoes are released in Florida to fight disease
M. Woolridge,  The Daily Guardian,  2021.
Breeding Malaria Out: Scientists Engineer Mosquitos to Spread Antimalaria Genes
L. Papadopoulos,  INTERSTING ENGINEERING,  2021.
Engineered sex ratio distortion by X-shredding in the global agricultural pest Ceratitis capitata
A. Meccariello, F. Krsticevic, R. Colonna, G. Del Corsano, B. Fasulo, P. A. Papathanos and N. Windbichler,  BMC Biology,  19:78. 2021.
Oxitec Receives Landmark Biosafety Approval for New Fall Armyworm Control Solution
Oxitec,  Oxitec,  2021.
Scientists are now playing god with mosquitoes
M. Wehner,  BGR,  2021.
Curbing Malaria’s Spread by Genetic Engineering
Anonymous,  Genetic Engineering & Biotechnology News,  2021.
New genetic modification could cut malaria spread
Staff Writers,  MALAYSIA NOW,  2021.
Ecological Relationships of Mosquito Disease Vectors: Anticipating Risk Assessment of Gene Drive Technologies
Stephanie James, Hector Quemada and David O'Brochta,  GeneConvene Global Collaborative,  2021.
Ecological Relationships of Mosquito Disease Vectors: Anticipating Risk Assessment of Gene Drive Technologies
Stephanie James, Hector Quemada and David O'Brochta,  GeneConvene Global Collaborative,  2021.
Researchers Using Mutant Mosquitoes To End Malaria, Which Kills 4 Lakh Per Year
M. Mohanti,  India Times,  2021.
Converting endogenous genes of the malaria mosquito into simple non-autonomous gene drives for population replacement
A. Hoermann, S. Tapanelli, P. Capriotti, G. Del Corsano, E. K. G. Masters, T. Habtewold, G. K. Christophides and N. Windbichler,  eLife,  10. 2021.
The Insect Pest Control Laboratory of the Joint FAO/IAEA Programme: Ten Years (2010–2020) of Research and Development, Achievements and Challenges in Support of the Sterile Insect Technique
M. J. B. Vreysen, A. M. M. Abd-Alla, K. Bourtzis, J. Bouyer, C. Caceres, C. de Beer, D. Oliveira Carvalho, H. Maiga, W. Mamai, K. Nikolouli, H. Yamada and R. Pereira,  Insects,  12. 2021.
First GMO mosquitoes to be released in the Florida Keys
T. White,  UNDARK,  2021.
Why do you think a gene drive approach could help with malaria and dengue?
Outreach Network for Gene Drive Research,  Outreach Network for Gene Drive Research,  2021.
How do local communities participate in gene drive research?
Outreach Network for Gene Drive Research,  Outreach Network for Gene Drive Research,  2021.
Introduction of a cold sensitivity-conferring mutation into the RTA-Bddsx hybrid system of Bactrocera dorsalis for establishment of a thermally controllable homozygous line
S. M. Dai, C. Y. Huang and C. Chang,  Pest Management Science,  7. 2021.
US Gene Drive Governance: A Special Feature in Health Security
L. Warmbrod, A. Kobokovich, R. West, G. K. Gronvall and M. Montague,  Health Security,  19:131-132. 2021.
Evidence for natural hybridization and novel Wolbachia strain superinfections in the Anopheles gambiae complex from Guinea
C. L. Jeffries, C. Cansado-Utrilla, A. H. Beavogui, C. Stica, E. K. Lama, M. Kristan, S. R. Irish and T. Walker,  Royal Society Open Science,  8:18. 2021.
CRISPR-mediated knock-in of transgenes into the malaria vector Anopheles funestus
C. Quinn, A. Anthousi, C. Wondji and T. Nolan,  bioRxiv,  2021.03.31.437891. 2021.
Determining the Sterilization Doses under Hypoxia for the Novel Black Pupae Genetic Sexing Strain of Anastrepha fraterculus (Diptera, Tephritidae)
P. D. Giustina, T. Mastrangelo, S. Ahmad, G. Mascarin and C. Caceres,  Insects,  12. 2021.
Systematic identification of plausible pathways to potential harm via problem formulation for investigational releases of a population suppression gene drive to control the human malaria vector Anopheles gambiae in West Africa
J. B. Connolly, J. D. Mumford, S. Fuchs, G. Turner, C. Beech, A. R. North and A. Burt,  Malaria Journal,  20:170. 2021.
Village hears from experts as genetic-mosquito release experiment nears.
J. McCarthy,  KEYSWEEKLY,  2021.
Invasion and maintenance of meiotic drivers in populations of ascomycete fungi
I. Martinossi-Allibert, C. Veller, S. L. Ament-Velasquez, A. A. Vogan, C. Rueffler and H. Johannesson,  Evolution,  20. 2021.
Double drives and private alleles for localised population genetic control
K. Willis and A. Burt,  PLOS Genetics,  17. 2021.
Sterile Insect Technique in an Integrated Vector Management Program against Tiger Mosquito Aedes albopictus in the Valencia Region (Spain): Operating Procedures and Quality Control Parameters
C. Tur, D. Almenar, S. Benlloch-Navarro, R. Argilés-Herrero, M. Zacarés, V. Dalmau and I. Pla,  Insects,  12. 2021.
Quantifying the risk of vector-borne disease transmission attributable to genetically modified vectors
G. R. Hosack, A. Ickowicz and K. R. Hayes,  Royal Society Open Science,  8:201525. 2021.
Experimenting with co-development: a qualitative study of gene drive research for malaria control in Mali
S. Hartley, K. Ledingham, R. Owen, S. Leonelli, S. Diarra and S. Diop,  Social Science and Medicine,  2021.
Ethics of Genome Editing
European Group on Ethics,  European Group on Ethics in Science and New Technologies,  2021.
Evaluating unintended consequences of intentional species introductions and eradications for improved conservation management
D. E. Pearson, T. J. Clark and P. G. Hahn,  Conserv Biol,  2021.
The ethical scientist in a time of uncertainty
L. Zoloth,  Cell,  184:1430-1439. 2021.
Driving to Safety: CRISPR-Based Genetic Approaches to Reducing Antibiotic Resistance
E. Bier and V. Nizet,  Trends in Genetics,  2021.
Ultra-conserved sequences in the genomes of highly diverse Anopheles mosquitoes, with implications for malaria vector control
S. M. O'Loughlin, A. J. Forster, S. Fuchs, T. Dottorini, T. Nolan, A. Crisanti and A. Burt,  G3-Genes Genomes Genetics,  2021.
Meiotic Cas9 expression mediates genotype conversion in the male and female mouse germline.
A. J. Weitzel, H. A. Grunwald, R. Levina, V. M. Gantz, S. M. Hedrick, E. Bier and K. L. Cooper,  2021.03.16.435716,  2021.
Evading resistance to gene drives
R. Gomulkiewicz, M. L. Thies and J. J. Bull,  Genetics,  217. 2021.
Differentiated impacts of human interventions on nature: Scaling the conversation on regulation of gene technologies
J. A. Heinemann, D. J. Paull, S. Walker and B. Kurenbach,  Elementa: Science of the Anthropocene,  9. 2021.
Genetically Encoded CRISPR components Yield Efficient Gene Editing in the Invasive Pest, Drosophila suzukii
N. P. Kandul, E. J. Belikoff, J. Liu, A. Buchman, F. Li, A. Yamamoto, T. Yang, I. Shriner, M. J. Scott and O. Akbari,  bioRxiv,  2021.03.15.435483. 2021.
Ugandan stakeholder hopes and concerns about gene drive mosquitoes for malaria control: new directions for gene drive risk governance
S. Hartley, R. D. J. Smith, A. Kokotovich, C. Opesen, T. Habtewold, K. Ledingham, B. Raymond and C. B. Rwabukwali,  Malaria Journal,  20:149. 2021.
Lessons from Drosophila: Engineering Genetic Sexing Strains with Temperature-Sensitive Lethality for Sterile Insect Technique Applications
T. N. M. Nguyen, A. Choo and S. W. Baxter,  Insects,  12. 2021.
Current Effector and Gene-Drive Developments to Engineer Arbovirus-Resistant Aedes aegypti (Diptera: Culicidae) for a Sustainable Population Replacement Strategy in the Field
W. R. Reid, K. E. Olson and A. W. E. Franz,  J Med Entomol,  2021.
When More is Less: Mosquito Population Suppression Using Sterile, Incompatible and Genetically Modified Male Mosquitoes
S. L. Dobson,  Journal of Medical Entomology,  58:1980-1986. 2021.
Mosquito anxiety prompts query from congressman
T. Java,  Keynews.com,  2021.
New Pesticides Will Modify Insect Genes: What Could Go Wrong?
Food Tank,  EcoWatch,  2021.
Gene Drives Built to Follow More Stringent Rules of the Road
Anonymous,  Genetic Engineering & Biotechnology News,  2021.
Thirteenth meeting of the WHO Vector Control Advisory Group
Vector Control Advisory Group,  WHO,  2021.
femaleless Controls Sex Determination and Dosage Compensation Pathways in Females of Anopheles Mosquitoes
E. Krzywinska, L. Ferretti, J. Li, J.-C. Li, C.-H. Chen and J. Krzywinski,  Current Biology,  31:1084-1091.e4. 2021.
Sex Determination and Dosage Compensation: femaleless Is the Link in Anopheles Mosquitoes
M. Scott,  Current Biology,  31:R260-R263. 2021.
Gene-Editing Approach To Control the Invasive Gray Squirrel
M. Campbell,  Technology Networks,  2021.
New gene-drive technologies can help control crop pests
Anonymous,  AZO Life Sciences,  2021.
Experts’ moral views on gene drive technologies: a qualitative interview study
N. de Graeff, K. R. Jongsma and A. L. Bredenoord,  BMC Medical Ethics,  22:25. 2021.
Eliminating Mosquitoes with Precision Guided Sterile Males
M. Li, T. Yang, M. Bui, S. Gamez, T. Wise, N. P. Kandul, J. Liu, L. Alcantara, H. Lee, J. R. Edula, R. Raban, Y. Zhan, Y. Wang, N. DeBeaubien, J. Chen, H. M. Sanchez C, J. B. Bennett, I. Antoshechkin, C. Montell, J. M. Marshall and O. S. Akbari,  bioRxiv,  2021.03.05.434167. 2021.
Hybrid mosquitoes? Evidence from rural Tanzania on how local communities conceptualize and respond to modified mosquitoes as a tool for malaria control
M. F. Finda, F. O. Okumu, E. Minja, R. Njalambaha, W. Mponzi, B. B. Tarimo, P. Chaki, J. Lezaun, A. H. Kelly and N. Christofides,  Malaria Journal,  20:134. 2021.
Inherently confinable split-drive systems in Drosophila
G. Terradas, A. B. Buchman, J. B. Bennett, I. Shriner, J. M. Marshall, O. S. Akbari and E. Bier,  Nature Communications,  12:1480. 2021.
New ‘Split-drive’ System Puts Scientists in the (Gene) Driver Seat
M. Aguilera,  UC San Diego News Center,  2021.
In Uganda, genetically modified mosquitoes bring hope and fear
Anonymous,  africanews,  2021.
A confinable home and rescue gene drive for population modification
N. P. Kandul, J. Liu, J. B. Bennett, J. M. Marshall and O. S. Akbari,  eLife,  10:e65939. 2021.
The science & ethics of gene drive technology from a conservation & development perspective
Renew Europe,  Renew Europe,  2021.
Ecology: Gene drives may help control invasive grey squirrel in the UK
A. Korn,  EurekaAlert,  2021.
Genetically modified mosquitoes for better health
D. Devis,  COSMOS,  2021.
Engineered expression of the invertebrate-specific scorpion toxin AaHIT reduces adult longevity and female fecundity in the diamondback moth Plutella xylostella
T. Harvey-Samuel, X. Xu, E. Lovett, T. Dafa'alla, A. Walker, V. C. Norman, R. Carter, J. Teal, L. Akilan, P. T. Leftwich, C. M. Reitmayer, H. A. Siddiqui and L. Alphey,  Pest Management Science,  2021.
Genetically modified squirrels could curb growing population of greys
S. Knapton,  Telegraph,  2021.
Expert reaction to a paper suggesting that gene drives could be used to help control grey squirrel numbers in the UK
Anonymous,  Science Media Centre,  2021.
CRISPR gene drives may come to a squirrel near you.
Anonymous,  NewsBeezer,  2021.
Novel combination of CRISPR-based gene drives eliminates resistance and localises spread
N. R. Faber, G. R. McFarlane, R. C. Gaynor, I. Pocrnic, C. B. A. Whitelaw and G. Gorjanc,  Scientific Reports,  11:3719. 2021.
Tensions rise as GM mosquito release nears in Florida Keys
T. O'Hara,  Keynews.com,  2021.
Quantifying the risk of vector-borne disease transmission attributable to genetically modified vectors
G. R. Hosack, A. Ickowicz and K. R. Hayes,  Royal Society Open Science,  8:201525. 2021.
Florida Keys moves forward with genetically modified mosquitoes
H. Vela,  local10.com,  2021.
Developing GDi-CRISPR System for Multi-copy Integration in Saccharomyces cerevisiae
Z.-X. Zhang, Y.-Z. Wang, Y.-S. Xu, X.-M. Sun and H. Huang,  Applied Biochemistry and Biotechnology,  2021.
Knowledge, Attitude, and Practices Survey in Greece before the Implementation of Sterile Insect Technique against Aedes albopictus
A. Stefopoulou, S. L. LaDeau, N. Syrigou, G. Balatsos, V. Karras, I. Lytra, E. Boukouvala, D. P. Papachristos, P. G. Milonas, A. Kapranas, P. Vahamidis and A. Michaelakis,  Insects,  12. 2021.
How Brussels can help or hinder the fight against malaria
F. Okumu,  EURACTIV,  2021.
Demographic and psychographic drivers of public acceptance of novel invasive pest control technologies
F. Eppink, P. J. Walsh and E. MacDonald,  Ecology and Society,  26. 2021.
Meiotic drive does not cause condition-dependent reduction of the sexual ornament in stalk-eyed flies
S. R. Finnegan, M. Mondani, K. Fowler and A. Pomiankowski,  Journal of Evolutionary Biology,  11. 2021.
When and where will millions of mosquitoes be released? Here are details for Florida Keys
D. Goodhue,  Miami Herald,  2021.
Designing gene drives to limit spillover to non-target populations
G. Greenbaum, M. W. Feldman, N. A. Rosenberg and J. Kim,  PLOS Genetics,  17:e1009278. 2021.
Sterile Insect Technique: Lessons From the Past
M. Q. Benedict,  Journal of Medical Entomology,  58:1974-1979. 2021.
Company uses engineered mosquitoes to prevent diseases
N. Herzog and D. Niesel,  The Daily News,  2021.
Sterile Insect Technique (SIT) against Aedes Species Mosquitoes: A Roadmap and Good Practice Framework for Designing, Implementing and Evaluating Pilot Field Trials
C. F. Oliva, M. Q. Benedict, C. M. Collins, T. Baldet, R. Bellini, H. Bossin, J. Bouyer, V. Corbel, L. Facchinelli, F. Fouque, M. Geier, A. Michaelakis, D. Roiz, F. Simard, C. Tur and L.-C. Gouagna,  Insects,  12. 2021.
Mosquito trial will begin in April, but Keys locations won’t be disclosed
S. Matthis,  KEYSWEEKLY,  2021.
Ecological Modeling in Risk Assessment of Gene Drives
Hector Quemada and David O'Brochta,  ,  2021.
GeneConvene Webinar Series on: Ecological Modeling in Risk Assessment of Gene Drives
Hector Quemada and David O'Brochta,  ,  2021.
Locals protest over genetically modified mosquito plan in Florida Keys
D. Goodhue,  Miami Herald,  2021.
Population genomics of invasive rodents on islands: Genetic consequences of colonization and prospects for localized synthetic gene drive
K. P. Oh, A. B. Shiels, L. Shiels, D. V. Blondel, K. J. Campbell, J. R. Saah, A. L. Lloyd, P. Q. Thomas, F. Gould, Z. Abdo, J. R. Godwin and A. J. Piaggio,  Evolutionary Applications,  2021.
Modeling impact and cost-effectiveness of gene drives for malaria elimination in the Democratic Republic of the Congo
N. Metchanun, C. Borgemeister, G. Amzati, J. von Braun, M. Nikolov, P. Selvaraj and J. Gerardin,  medRxiv,  2020.06.29.20142760. 2021.
Holocentric Chromosomes Probably Do Not Prevent Centromere Drive in Cyperaceae
M. Kratka, J. Smerda, K. Lojdova, P. Bures and F. Zedek,  Frontiers in Plant Science,  12:9. 2021.
Split versions of Cleave and Rescue selfish genetic elements for measured self limiting gene drive
G. Oberhofer, T. Ivy and B. A. Hay,  PLoS genetics,  17:e1009385. 2021.
Emergent challenges for CRISPR: biosafety, biosecurity, patenting, and regulatory issues
Braddick, D. , and Ramarohetra, R. F.,  Genome Engineering Via Crispr-Cas9 System,  2021.
Plain language summary: How do we have a public conversation about new technologies for conservation? The possibilities and pitfalls of scientific language
Annonymous,  Relational Thinking,  2021.
Scientifically framed gene drive communication perceived as credible but riskier
E. A. MacDonald, E. D. Edwards, J. Balanovic and F. Medvecky,  People and Nature,  2021.
ReMOT Control Delivery of CRISPR-Cas9 Ribonucleoprotein Complex to Induce Germline Mutagenesis in the Disease Vector Mosquitoes Culex pipiens pallens (Diptera: Culicidae)
X. X. Li, Y. Xu, H. B. Zhang, H. T. Yin, D. Zhou, Y. Sun, L. Ma, B. Shen and C. L. Zhu,  Journal of Medical Entomology,  58. 2021.
Detailed genome map of malaria vector
The Hindu,  Aspirant World,  2021.
Operational Parameters for the Aerial Release of Sterile Codling Moths Using an Uncrewed Aircraft System
E. D. Esch, R. M. Horner, D. C. Krompetz, N. Moses-Gonzales, M. R. Tesche and D. M. Suckling,  Insects,  12:2/13/2021. 2021.
Researchers Unveil Detailed Genome of Invasive Malaria Mosquito
M. Aguilera,  UC San Diego News Center,  2021.
Optimized CRISPR tools and site-directed transgenesis in Culex quinquefasciatus mosquitoes for gene drive development
X. Feng, V. Lopez Del Amo, E. Mameli, M. Lee, A. L. Bishop, N. Perrimon and V. M. Gantz,  bioRxiv,  2021.02.10.430702. 2021.
Hidden genomic features of an invasive malaria vector, Anopheles stephensi, revealed by a chromosome-level genome assembly
M. Chakraborty, A. Ramaiah, A. Adolfi, P. Halas, B. Kaduskar, L. T. Ngo, S. Jayaprasad, K. Paul, S. Whadgar, S. Srinivasan, S. Subramani, E. Bier, A. A. James and J. J. Emerson,  BMC Biology,  19:28. 2021.
Projects to target a range of pest control solutions
K. McCormack,  The Chronicle,  2021.
Oxitec gears up for test releases
T. O'Hara,  Keynews.com,  2021.
A Code of Ethics for Gene Drive Research
G. J. Annas, C. L. Beisel, K. Clement, A. Crisanti, S. Francis, M. Galardini, R. Galizi, J. Grünewald, G. Immobile, A. S. Khalil, R. Müller, V. Pattanayak, K. Petri, L. Paul, L. Pinello, A. Simoni, C. Taxiarchi and J. K. Joung,  The CRISPR Journal,  2021.
Assisting Evolution: How Far Should We Go to Help Species Adapt?
E. Kolbert,  YaleEnvironment360,  2021.
Number of Project Wolbachia mosquitoes released is constantly reviewed to maintain suppression of dengue: NEA
N. L. Ching,  today,  2021.
Should we dim the sun? Will we even have a choice
E. Klein,  New York Times,  2021.
Public attitudes towards synthetic biology
CSIRO,  Synthetic Biology Future Science Platform,  2021.
In Our Image: The Ethics of CRISPR Genome Editing
J. C. Eissenberg,  Biomolecular Concepts,  12:1-7. 2021.
Genetic Biocontrol Webinars
David O'Brochta and Hector Quemada,  GeneConvene Global Collaborative,  2021.
How to engage communities on a large scale? Lessons from World Mosquito Program in Rio de Janeiro, Brazil [version 2; peer review: 1 approved, 2 approved with reservations]
G. B. Costa, R. Smithyman, S. L. O'Neill and L. A. Moreira,  Gates Open Research,  2021.
Reply to: Issues with combining incompatible and sterile insect techniques
Y. Li, L. A. Baton, D. Zhang, J. Bouyer, A. G. Parker, A. A. Hoffmann, L. C. Ng, C. H. Tan and Z. Xi,  Nature,  590:E3-E5. 2021.
The complete mitogenome sequence of the agricultural pest, clover root weevil: the key to its own demise?
R. A. Al-Jiab, J. Gillum, A. Alexander, D. M. Tompkins, C. B. Phillips, P. K. Dearden and N. J. Gemmell,  Mitochondrial DNA Part B,  4:878-879. 2021.
Grey squirrels: is birth control the solution to Britain’s invasive species problem?
J. Gilchrist,  The Conversation,  2021.
Issues with combining incompatible and sterile insect techniques
R. Moretti and M. Calvitti,  Nature,  590:E1-E2. 2021.
Mosquitoes genetically modified to be resistant to Zika
Staff,  Lab+Life Scientist,  2021.
Experts oppose plan to breed mosquitoes
T. Abet,  Daily Monitor,  2021.
Improving the Phenotypic Properties of the Ceratitis capitata (Diptera: Tephritidae) Temperature-Sensitive Lethal Genetic Sexing Strain in Support of Sterile Insect Technique Applications
M. F. Porras, J. S. Meza, E. G. Rajotte, K. Bourtzis and C. Caceres,  Journal of Economic Entomology,  113:2688-2694. 2021.
Regulating the expression of gene drives is key to increasing their invasive potential and the mitigation of resistance
A. Hammond, X. Karlsson, I. Morianou, K. Kyrou, A. Beaghton, M. Gribble, N. Kranjc, R. Galizi, A. Burt, A. Crisanti and T. Nolan,  PLOS Genetics,  17:e1009321. 2021.
Les Européens très critiques vis-à-vis du forçage génétique
L. Duboua-Lorsch,  EURACTIV,  2021.
Project Wolbachia: Residents are killing the ‘helpful’ mosquitoes, which can be a nuisance
T. J. Cheng,  today,  2021.
Genetically modified mosquitoes to curb malaria
T. Abet,  Daily Monitor,  2021.
New genetically modified mosquitoes to help fight malaria
D. Zirimala,  Capital Radio FM,  2021.
Sexual Competitiveness and Induced Egg Sterility by Aedes aegypti and Aedes albopictus Gamma-Irradiated Males: A Laboratory and Field Study in Mexico
J. G. Bond, S. Aguirre-Ibáñez, A. R. Osorio, C. F. Marina, Y. Gómez-Simuta, R. Tamayo-Escobar, A. Dor, P. Liedo, D. O. Carvalho and T. Williams,  Insects,  12. 2021.
Proceedings of an expert workshop on community agreement for gene drive research in Africa – Co-organised by KEMRI, PAMCA and Target Malaria [version 1; peer review: awaiting peer review]
D. Thizy, L. Pare Toe, C. Mbogo, D. Matoke-Muhia, V. P. Alibu, S. K. Barnhill-Dilling, T. Chantler, G. Chongwe, J. Delborne, L. Kapiriri, E. Nassonko Kavuma, S. Koloi-Keaikitse, A. Kormos, K. Littler, D. Lwetoijera, R. Vargas de Moraes, N. Mumba, L. Muten,  Gates Open Research,  2021.
GeneConvene Webinar Series on: Genetic Biocontrol
David O'Brochta and Hector Quemada,  ,  2021.
GENE DRIVE ACCEPTANCE SURVEY
YouGov,  Pollinis,  2021.
Demographic feedbacks can hamper the spatial spread of a gene drive
L. Girardin and F. Débarre,  arXiv,  2021.
Playing God and tampering with nature: popular labels for real concerns in synthetic biology
L. Carter, A. Mankad, E. V. Hobman and N. B. Porter,  Transgenic Research,  2021.
RNAi-based products: A sustainable alternative to hazardous pesticides
Ghent University,  Phys Org,  2021.
Genetically-modified mosquitoes key to stopping Zika virus spread
University of Missouri,  Medical Xpress,  2021.
Into the Wild: GMOs head for the forest
L. Sharratt,  Sentinel,  2021.
Anopheles gambiae Genome Conservation as a Resource for Rational Gene Drive Target Site Selection
N. Kranjc, A. Crisanti, T. Nolan and F. Bernardini,  Insects,  12. 2021.
Drivers of mosquito mating
N. C. Manoukis,  Science,  371:340. 2021.
Clock genes and environmental cues coordinate Anopheles pheromone synthesis, swarming, and mating
G. Wang, J. Vega-Rodríguez, A. Diabate, J. Liu, C. Cui, C. Nignan, L. Dong, F. Li, C. O. Ouedrago, A. M. Bandaogo, P. S. Sawadogo, H. Maiga, T. L. Alves e Silva, T. V. Pascini, S. Wang and M. Jacobs-Lorena,  Science,  371:411. 2021.
The Promises and Realities of Integration in Synthetic Biology: A View From Social Science
L. Carter and A. Mankad,  Frontiers in Bioengineering and Biotechnology,  8. 2021.
White pupae phenotype of tephritids is caused by parallel mutations of a MFS transporter
C. M. Ward, R. A. Aumann, M. A. Whitehead, K. Nikolouli, G. Leveque, G. Gouvi, E. Fung, S. J. Reiling, H. Djambazian, M. A. Hughes, S. Whiteford, C. Caceres-Barrios, T. N. M. Nguyen, A. Choo, P. Crisp, S. B. Sim, S. M. Geib, F. Marec, I. Hacker, J. Ragous,  Nature Communications,  12. 2021.
Co‐developing a common glossary with stakeholders for engagement on new genetic approaches for malaria control in a local African setting
E. Chemonges Wanyama, B. Dicko, L. Pare Toe, M. B. Coulibaly, N. Barry, K. Bayala Traore, A. Diabate, M. Drabo, J. K. Kayondo, S. Kekele, S. Kodio, A. D. Ky, R. R. Linga, E. Magala, W. I. Meda, S. Mukwaya, A. Namukwaya, B. Robinson, H. Samoura, K. Sanogo,  Malaria Journal,  20:53. 2021.
Combining refuges with transgenic insect releases for the management of an insect pest with non-recessive resistance to Bt crops in agricultural landscapes
T. R. Brewer and M. B. Bonsall,  Journal of Theoretical Biology,  509:11. 2021.
Manipulation of Gut Symbionts for Improving the Sterile Insect Technique: Quality Parameters of Bactrocera dorsalis (Diptera: Tephritidae) Genetic Sexing Strain Males After Feeding on Bacteria-Enriched Diets
Q. Zhang, P. Cai, B. Wang, X. Liu, J. Lin, R. Hua, H. Zhang, C. Yi, X. Song, Q. Ji, J. Yang and S. Chen,  Journal of Economic Entomology,  114:560-570. 2021.
Exploring Gene Drive Technologies in Agriculture, Biodiversity and Human Disease
The GBIRd Partnership and The GeneConvene Global Collaborative,  Gene Drive Research Forum,  2021.
Widespread haploid-biased gene expression enables sperm-level natural selection
K. Bhutani, K. Stansifer, S. Ticau, L. Bojic, A.-C. Villani, J. Slisz, C. M. Cremers, C. Roy, J. Donovan, B. Fiske and R. C. Friedman,  Science,  eabb1723. 2021.
Responsibly Developing Gene Drives: The GeneConvene Global Collaborative
J. Toomey,  Bill of Health,  2021.
‘Clever Approach’: Scientists Create GM-Free Organisms Using Genetic Engineering
A. Paleja,  The WIRE,  2021.
Selfing is the safest sex for Caenorhabditis tropicalis
L. M. Noble, J. Yuen, L. Stevens, N. D. Moya, R. Persaud, M. Moscatelli, J. L. Jackson, G. Zhang, R. Chitrakar, L. R. Baugh, C. Braendle, E. C. Andersen, H. S. Seidel and M. V. Rockman,  eLife,  10:e62587. 2021.
Population Dynamics of Aedes aegypti and Aedes albopictus in Two Rural Villages in Southern Mexico: Baseline Data for an Evaluation of the Sterile Insect Technique
C. F. Marina, J. G. Bond, K. Hernández-Arriaga, J. Valle, A. Ulloa, I. Fernández-Salas, D. O. Carvalho, K. Bourtzis, A. Dor, T. Williams and P. Liedo,  Insects,  12. 2021.
CRISPR and the splice to survive: New gene-editing technology could be used to save species from extinction—or to eliminate them.
E. Kolbert,  New Yorker,  2021.
Double drives and private alleles for localised population genetic control
K. Willis and A. Burt,  bioRxiv,  2021.01.08.425856. 2021.
Self-Deleting Genes Project To Tackle Mosquito-Borne Diseases
D. Ozdemir,  INTERESTING ENGINEERING,  2021.
Targeting evolutionary conserved sequences circumvents the evolution of resistance in a viral gene drive against human cytomegalovirus
M. Walter, R. Perrone and E. Verdin,  bioRxiv,  2021.01.08.425902. 2021.
Suppression gene drive in continuous space can result in unstable persistence of both drive and wild-type alleles
J. Champer, I. K. Kim, S. E. Champer, A. G. Clark and P. W. Messer,  Mol Ecol,  2021.
Selfish elements turn embryos into a battlefield
Institute of Molecular Biotechnology of the Austrian Academy of Sciences,  Phys Org,  2021.
Demystifying the Risk Assessment Process for Laboratory-Based Experiments Utilizing Invasive Genetic Elements: It Is More Than Gene Drive
Z. N. Adelman,  Applied Biosafety,  2021.
Ubiquitous Selfish Toxin-Antidote Elements in Caenorhabditis Species
E. Ben-David, P. Pliota, S. A. Widen, A. Koreshova, T. Lemus-Vergara, P. Verpukhovskiy, S. Mandali, C. Braendle, A. Burga and L. Kruglyak,  Current Biology,  2021.
Next-generation tools to control biting midge populations and reduce pathogen transmission
P. Shults, L. W. Cohnstaedt, Z. N. Adelman and C. Brelsfoard,  Parasites and Vectors,  14:31. 2021.
Mosquito Sexual Selection and Reproductive Control Programs
L. J. Cator, C. A. S. Wyer and L. C. Harrington,  Trends in Parasitology,  37:330-339. 2021.
Mosquito Sexual Selection and Reproductive Control Programs
L. J. Cator, C. A. S. Wyer and L. C. Harrington,  Trends in Parasitology,  2021.
Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management (2nd ed.)
V. A. Dyck, J. Hendrichs and A. S. Robinson,  CRC Press,  2021.
ARS Science Key to Stopping ‘Man-Eating’ Parasite
S. Elliott,  Tellus,  2021.
Conservation pest control with new technologies: public perceptions
E. A. MacDonald, M. B. Neff, E. Edwards, F. Medvecky and J. Balanovic,  Journal of the Royal Society of New Zealand,  2021.
The New Yorker Magazine: Gene Drives as a Tool for Saving Nature
E. Heber,  Island Conservation,  2021.
Whole-genome resequencing reveals loci with allelic transmission ratio distortion in F1 chicken population
P. Ren, F. Deng, S. Chen, J. Ran, J. Li, L. Yin, Y. Wang, H. Yin, Q. Zhu and Y. Liu,  Molecular Genetics and Genomics,  2021.
His Passion Was Contagious
D. C. McCool,  Notre Dame Magazine,  2021.
RNA editing controls meiotic drive by a Neurospora Spore killer
N. A. Rhoades and T. M. Hammond,  bioRxiv,  2020.12.30.424869. 2021.
Edit, undo: Temporary gene editing could help solve the mosquito problem
L. Dormehl,  digitaltrends,  2020.
Self-deleting genes promise risk-free genetic engineering of mosquitoes
D. Quick,  New Atlas,  2020.
Self-deleting genes to be tested as part of mosquito population control concept
B. Hays,  UPI,  2020.
$3.9M project on self-deleting genes takes aim at mosquito-borne diseases
O. Kuchment,  AGRILIFE Today,  2020.
Self-deleting genes tested as part of the concept of mosquito population control
charlottelarson,  NEWYORK NEWS TIMES,  2020.
Transgenic cotton and sterile insect releases synergize eradication of pink bollworm a century after it invaded the United States
B. E. Tabashnik, L. R. Liesner, P. C. Ellsworth, G. C. Unnithan, J. A. Fabrick, S. E. Naranjo, X. Li, T. J. Dennehy, L. Antilla, R. T. Staten and Y. Carrière,  Proceedings of the National Academy of Sciences,  118:e2019115118. 2020.
Genetic pest management and the background genetics of release strains
P. T. Leftwich, L. G. Spurgin, T. Harvey-Samuel, C. J. E. Thomas, L. C. Paladino, M. P. Edgington and L. Alphey,  Philosophical Transactions of the Royal Society B: Biological Sciences,  376:20190805. 2020.
Control of malaria-transmitting mosquitoes using gene drives
T. Nolan,  Philosophical Transactions of the Royal Society B: Biological Sciences,  376:20190803. 2020.
Genetic sexing strains for the population suppression of the mosquito vector Aedes aegypti
P. Koskinioti, A. A. Augustinos, D. O. Carvalho, M. Misbah-ul-Haq, G. Pillwax, L. D. d. l. Fuente, G. Salvador-Herranz, R. A. Herrero and K. Bourtzis,  Philosophical Transactions of the Royal Society B: Biological Sciences,  376:20190808. 2020.
Wolbachia strain wAlbB maintains high density and dengue inhibition following introduction into a field population of Aedes aegypti
N. A. Ahmad, M.-V. Mancini, T. H. Ant, J. Martinez, G. M. R. Kamarul, W. A. Nazni, A. A. Hoffmann and S. P. Sinkins,  Philosophical Transactions of the Royal Society B: Biological Sciences,  376:20190809. 2020.
Making gene drive biodegradable
J. Zapletal, N. Najmitabrizi, M. Erraguntla, M. A. Lawley, K. M. Myles and Z. N. Adelman,  Philosophical Transactions of the Royal Society B: Biological Sciences,  376:20190804. 2020.
Vector dynamics influence spatially imperfect genetic interventions against disease
M. K. Yuksel, C. H. Remien, B. Karki, J. J. Bull and S. M. Krone,  Evolution, Medicine, and Public Health,  9:1-10. 2020.
Application of the Relationship-Based Model to Engagement for Field Trials of Genetically Engineered Malaria Vectors
A. Kormos, G. C. Lanzaro, E. Bier, G. Dimopoulos, J. M. Marshall, J. Pinto, A. Aguiar dos Santos, A. Bacar, H. Sousa Pontes Sacramento Rompão and A. A. James,  The American Journal of Tropical Medicine and Hygiene,  2020.
New GE unintentionally leaves traces in cells
C. Then,  Testbiotech,  2020.
CRISPR/Cas9 knockout of female-biased genes AeAct-4 or myo-fem in Ae. aegypti results in a flightless phenotype in female, but not male mosquitoes
S. O’Leary and Z. N. Adelman,  PLOS Neglected Tropical Diseases,  14:e0008971. 2020.
Precise single base substitution in the shibire gene by CRISPR/Cas9-mediated homology directed repair in Bactrocera tryoni
A. Choo, E. Fung, I. Y. Chen, R. Saint, P. Crisp and S. W. Baxter,  BMC Genetics,  21. 2020.
Converting female mosquitoes to non-biting males with implications for mosquito control
M. V. Candy,  Vet Candy,  2020.
New insect species made via genetic engineering
L. Leffer,  SCIENCELINE,  2020.
FKMCD and Oxitec Webinars
Oxitec Ltd,  FKMCD and Oxitec,  2020.
Core commitments for field trials of gene drive organisms
K. C. Long, L. Alphey, G. J. Annas, C. S. Bloss, K. J. Campbell, J. Champer, C.-H. Chen, A. Choudhary, G. M. Church, J. P. Collins, K. L. Cooper, J. A. Delborne, O. R. Edwards, C. I. Emerson, K. Esvelt, S. W. Evans, R. M. Friedman, V. M. Gantz, F. Gould,,  Science,  370:1417-1419. 2020.
Scientists paved the way for field trials of gene-driven organisms
K. Winslet,  FLORIDA News Times,  2020.
Technical Support to Burkina Faso on Gene Drive Stage 2 Dossier Review
AUDA-NEPAD,  AUDA-NEPAD,  2020.
Gene Drive-Modified Organisms: Developing Practical Risk Assessment Guidance
Y. Devos, M. B. Bonsall, L. G. Firbank, J. Mumford, F. Nogué and E. A. Wimmer,  Trends in Biotechnology,  2020.
Scientists Set a Path for Field Trials of Gene Drive Organisms
M. Aguilera,  UC San Diego News Center,  2020.
Fear of Oxitec mosquito release grows
T. Java,  Florida Keys Free Press,  2020.
A CRISPR endonuclease gene drive reveals two distinct mechanisms of inheritance bias
S. A. N. Verkuijl, E. González, J. X. D. Ang, M. Li, N. P. Kandul, M. Anderson, O. S. Akbari, M. Bonsall and L. Alphey,  bioRxiv,  2020.12.15.421271. 2020.
The Antiviral Small-Interfering RNA Pathway Induces Zika Virus Resistance in Transgenic Aedes aegypti
A. E. Williams, I. Sanchez-Vargas, W. R. Reid, J. Y. Lin, A. W. E. Franz and K. E. Olson,  Viruses,  12:18. 2020.
Evading resistance to gene drives
R. Gomulkiewicz, M. L. Thies and J. J. Bull,  bioRxiv,  2020.08.27.270611. 2020.
Polyandry blocks gene drive in a wild house mouse population
A. Manser, B. Konig and A. K. Lindholm,  Nature Communications,  11:8. 2020.
Interdisciplinary development of a standardized introduction to gene drives for lay audiences
C. E. Schairer, C. Triplett, A. Buchman, O. S. Akbari and C. S. Bloss,  BMC Medical Research Methodology,  20:15. 2020.
X-linked meiotic drive can boost population size and persistence
C. Mackintosh, A. Pomiankowski and M. F. Scott,  Genetics,  217:11. 2020.
A patent review on strategies for biological control of mosquito vector
K. Parihar, M. Telang and A. Ovhal,  World Journal of Microbiology and Biotechnology,  36:23. 2020.
Burkina Faso Stakeholders consultations on Gene Drive Technology for integrated vector management towards malaria elimination
AUDA-NEPAD,  AUDA-NEPAD,  2020.
Engineering a Culturable Serratia symbiotica Strain for Aphid Paratransgenesis
K. M. Elston, J. Perreau, G. P. Maeda, N. A. Moran and J. E. Barrick,  Applied Environmental Microbiology,  87. 2020.
A Gene Drive Could Wipe Out Mosquitoes. But What If We Want To Turn It Off?
A. Winkler,  freethink,  2020.
Does RNAi-Based Technology Fit within EU Sustainability Goals?
C. N. T. Taning, B. Mezzetti, G. Kleter, G. Smagghe and E. Baraldi,  Trends in Biotechnology,  2020.
Targeting female flight for genetic control of mosquitoes
D. Navarro-Payá, I. Flis, M. A. E. Anderson, P. Hawes, M. Li, O. S. Akbari, S. Basu and L. Alphey,  PLOS Neglected Tropical Diseases,  14:e0008876. 2020.
Evaluating Gene Drive Approaches for Public Benefit
M. R. Santos,  GMOs: Implications for Biodiversity Conservation and Ecological Processes,  2020.
Engineered Gene Drives and their Value in the Control of Vector-Borne Diseases, Weeds, Pests, and Invasive Species
K. Hefferon and R. Herring,  GMOs: Implications for Biodiversity Conservation and Ecological Processes,  2020.
Engineered Gene Drives: Ecological, Environmental, and Societal Concerns
J. Kuzma,  GMOs: Implications for Biodiversity Conservation and Ecological Processes,  2020.
Genetically Engineered Fish: Potential Impacts on Aquaculture, Biodiversity, and the Environment
R. A. Dunham and B. Su,  GMOs: Implications for Biodiversity Conservation and Ecological Processes,  2020.
Invasive Species Control and Resolution of Wildlife Damage Conflicts: A Framework for Chemical and Genetically Based Management Methods
L. Clark, J. Eisemann, J. Godwin, K. E. Horak, K. Oh, J. O’Hare, A. Piaggio, K. Pepin and E. Ruell,  GMOs: Implications for Biodiversity Conservation and Ecological Processes,  2020.
GMOs: Implications for Biodiversity Conservation and Ecological Processes
Chaurasia, Anurag , Hawksworth, David L., Pessoa de Miranda, Manoela.,  GMOs: Implications for Biodiversity Conservation and Ecological Processes,  2020.
Modelling the Wolbachia incompatible insect technique: strategies for effective mosquito population elimination
D. E. Pagendam, B. J. Trewin, N. Snoad, S. A. Ritchie, A. A. Hoffmann, K. M. Staunton, C. Paton and N. Beebe,  BMC Biology,  18:13. 2020.
Design and analysis of CRISPR-based underdominance toxin-antidote gene drives
J. Champer, S. E. Champer, I. K. Kim, A. G. Clark and P. W. Messer,  Evolutionary Applications,  18. 2020.
Mosquito genomes are frequently invaded by transposable elements through horizontal transfer
E. S. de Melo and G. L. Wallau,  PLOS Genetics,  16:e1008946. 2020.
Strategic Approach, Advances, and Challenges in the Development and Application of the SIT for Area-Wide Control of Aedes albopictus Mosquitoes in Reunion Island
L. C. Gouagna, D. Damiens, C. F. Oliva, S. Boyer, G. Le Goff, C. Brengues, J.-S. Dehecq, J. Raude, F. Simard and D. Fontenille,  Insects,  11:770. 2020.
Reply to: “Enhancement of Aedes aegypti susceptibility to dengue by Wolbachia is not supported”
C. Souto-Maior, J. G. King, L. M. Sartori, R. Maciel-de-Freitas and M. G. M. Gomes,  Nature Communications,  11:6113. 2020.
Enhancement of Aedes aegypti susceptibility to dengue by Wolbachia is not supported
T. H. Ant, M.-V. Mancini, J. Martinez and S. P. Sinkins,  Nature Communications,  11:6111. 2020.
Toxin-Antidote Elements Across the Tree of Life
A. Burga, E. Ben-David and L. Kruglyak,  Annual Review Genetics,  54:387-415. 2020.
Combined Effects of Mating Disruption, Insecticides, and the Sterile Insect Technique on Cydia pomonella in New Zealand
R. M. Horner, P. L. Lo, D. J. Rogers, J. T. S. Walker and D. M. Suckling,  Insects,  11:23. 2020.
Mosquito population modification: the drive to malaria eradication
A. A. James,  BugBitten BMC,  2020.
Split drive killer-rescue provides a novel threshold-dependent gene drive
M. P. Edgington, T. Harvey-Samuel and L. Alphey,  Scientific Reports,  10. 2020.
Split drive killer-rescue provides a novel threshold-dependent gene drive
M. P. Edgington, T. Harvey-Samuel and L. Alphey,  Scientific Reports,  10:13. 2020.
Transformation and slippage in co-production ambitions for global technology development: The case of gene drive
K. Ledingham and S. Hartley,  Environmental Science & Policy,  116:78-85. 2020.
Field Competitiveness of Aedes albopictus (Diptera: Culicidae) Irradiated Males in Pilot Sterile Insect Technique Trials in Northern Italy
R. Bellini, M. Carrieri, F. Balestrino, A. Puggioli, M. Malfacini and J. Bouyer,  Journal of Medical Entomology,  58:807-813. 2020.
FNIH Panel on Gene Drive Regulation Emphasizes Need for Local Community Engagement
C. Rizk,  GenomeWeb,  2020.
Sequence analysis in Bos taurus reveals pervasiveness of X–Y arms races in mammalian lineages
J. F. Hughes, H. Skaletsky, T. Pyntikova, N. Koutseva, T. Raudsepp, L. G. Brown, D. W. Bellott, T.-J. Cho, S. Dugan-Rocha, Z. Khan, C. Kremitzki, C. Fronick, T. A. Graves-Lindsay, L. Fulton, W. C. Warren, R. K. Wilson, E. Owens, J. E. Womack, W. J. Murphy,  Genome Research,  2020.
The bull Y chromosome has evolved to bully its way into gametes
Whitehead Institute for Biomedical Research,  Phys Org,  2020.
‘A plague to be reckoned with’: UMN research creates a buzz with invasive fruit fly research
B. Most,  The Minnesota Daily,  2020.
Engineering biological diversity: the international governance of synthetic biology, gene drives, and de-extinction for conservation
J. L. Reynolds,  Current Opinion in Environmental Sustainability,  49:1-6. 2020.
Standardizing the Definition of Gene Drive
L. S. Alphey, A. Crisanti, F. Randazzo and O. S. Akbari,  Proceedings of the National Academy of Sciences,  202020417. 2020.
The promise of CRISPR and gene drive systems to end malaria in Africa
E. Gomez-Diaz,  ARRIGE ORG,  2020.
Further guidance required for assessment of gene drive technology, says EFSA
N. Foote,  Euractiv,  2020.
Further guidance required for assessment of gene drive technology, says EFSA
Euractiv,  The World News Monitor,  2020.
Mutagenic chain reaction cannot be sufficiently controlled
Christoph Then,  Testbiotech,  2020.
Assessment of a Novel Adult Mass-Rearing Cage for Aedes albopictus (Skuse) and Anopheles arabiensis (Patton).
H. Maïga, W. Mamai, N. S. Bimbilé Somda, T. Wallner, B. S. Poda, G. Salvador-Herranz, R. Argiles-Herrero, H. Yamada and J. Bouyer,  Insects,  11:801. 2020.
Adequacy and sufficiency evaluation of existing EFSA guidelines for the molecular characterisation, environmental risk assessment and post-market environmental monitoring of genetically modified insects containing engineered gene drives
E. Panel o. G. M. Organisms, H. Naegeli, J.-L. Bresson, T. Dalmay, I. C. Dewhurst, M. M. Epstein, P. Guerche, J. Hejatko, F. J. Moreno, E. Mullins, F. Nogué, N. Rostoks, J. J. Sánchez Serrano, G. Savoini, E. Veromann, F. Veronesi, M. B. Bonsall, J. Mumfor,  EFSA Journal,  18:e06297. 2020.
Outcome of a public consultation on the draft adequacy and sufficiency evaluation of existing EFSA guidelines for the molecular characterisation, environmental risk assessment and post-market environmental monitoring of genetically modified insects containing engineered gene drives
European Food Safety Authority, Y. Devos, M. B. Bonsall, F. Nogué, K. Paraskevopoulos, E. A. Wimmer and L. G. Firbank,  EFSA Supporting Publications,  17:1939E. 2020.
EFSA advises on risk assessment of engineered gene drives
EFSA,  European Food and Safety Authority,  2020.
Gene drives, species, and compassion for individuals in conservation biology
Y. Rohwer,  Ethics, Policy and Environment,  2020.
Novel and Exceptional Technology and Research Advisory Committee – NExTRAC -NIH
NIH Office of Science Policy,  National Institutes of Health (NIH),  2020.
When Extinction is Warranted: Invasive Species, Suppression-Drives, and the Worst-Case Scenario
A. C. Thresher,  Ethics, Policy and Environment,  2020.
Brave New Planet: Reshaping Nature Through Gene Drives
E. Lander,  Brave New Planet,  2020.
Gene drive blocks malaria transmission in mosquitoes
labonline,  labonline,  2020.
The ethical way to alter organisms
K. Esvelt,  Boston Globe,  2020.
Gene Drives: A Controversial Tool to Fight Malaria
H. Albert,  LABIOTECH.eu,  2020.
Expert advises farmers to adopt gene drive-based pest control technology
S. Thompson,  naija247news,  2020.
Advances in genetic engineering test democracy’s capacity for good decision-making
N. Kofler and R. Taitingfong,  Boston Globe,  2020.
Research and Innovation for biodiversity: what role for gene drive research?
EP Intergroup CCBSD,  European Bureau of Conservation and Development,  2020.
Fighting Mosquito With GMO Mosquito: The Battle Brewing in the Florida Keys
S. MacLaughlin,  NBC 6 South Florida,  2020.
Evading evolution of resistance to gene drives
R. Gomulkiewicz, M. L. Thies and J. J. Bull,  bioRxiv,  2020.08.27.270611. 2020.
Modeling CRISPR gene drives for suppression of invasive rodents
S. E. Champer, N. Oakes, R. Sharma, P. García-Díaz, J. Champer and P. W. Messer,  bioRxiv,  2020.11.05.369942. 2020.
Florida will release 750 million genetically modified mosquitoes
S. McGlaun,  Slash Gear,  2020.
A gene-drive rescue system for the modification of malaria mosquito populations
A. Adolfi,  Nature Research Bioengineering Community,  2020.
A test for meiotic drive in hybrids between Australian and Timor zebra finches
U. Knief, W. Forstmeier, Y. Pei, J. Wolf and B. Kempenaers,  Ecology and Evolution,  2020.
UC researchers pioneer more effective method of blocking malaria transmission in mosquitoes
UCI,  UCI News,  2020.
Efficient population modification gene-drive rescue system in the malaria mosquito Anopheles stephensi
A. Adolfi, V. M. Gantz, N. Jasinskiene, H.-F. Lee, K. Hwang, G. Terradas, E. A. Bulger, A. Ramaiah, J. B. Bennett, J. J. Emerson, J. M. Marshall, E. Bier and A. A. James,  Nature Communications,  11:5553. 2020.
Genetic engineering of sex chromosomes for batch cultivation of non-transgenic, sex-sorted males
S. R. Das, M. Maselko, A. Upadhyay and M. J. Smanski,  PloS Genetics,  16:11. 2020.
Is Gene Editing the Answer to Eradicating Malaria in Africa?
Staff,  ASH Clinical News,  2020.
Gene Drives across engineered fitness valleys: Modeling a design to prevent drive spillover.
F. J. H. de Haas and S. Otto,  bioRxiv,  2020.10.29.360404. 2020.
The Sterile Insect Technique: Success and Perspectives in the Neotropics
D. Perez-Staples, F. Diaz-Fleischer and P. Montoya,  Neotropical Entomology,  14. 2020.
Interview with Professor Austin Burt: Role of gene drive technology in the context of the EU’s Biodiversity Strategy 2030
S. Dunphy,  European Scientist,  2020.
Inauguration and first meeting of WA-IVM Technical Working Groups
AUDA-NEPAD,  AUDA-NEPAD News,  2020.
Gene Drive: The What, How, Why, and Whether We Should
N. Pazhayam,  The Pipettepen,  2020.
Educating the Public on Genetically Modified Mosquitoes
Buckner, Eva A.,  UF - IFAS,  2020.
Mosquito transgenics and courtship songs
H. Hurd,  BugBitten BMC,  2020.
Engineered Gene Drives: Policy and Regulatory Considerations Webinar Series by The GeneConvene Global Collaborative October-December 2020
Hector Quemada and David O'Brochta,  GeneConvene Global Collaborative,  2020.
WHO Refers to GM Mosquitoes as Beneficial Technology
ISAAA,  Crop Biotech Update,  2020.
Position of ARRIGE Scientific Committee on Gene Drive
ARRIGE Scientific Committee on Gene Drive,  ARRIGE Newsletter,  2020.
Researchers help complete world first wasp genome project
Staff,  The National Tribune,  2020.
Researchers complete world first wasp genome project
University of Otago,  Phys Org,  2020.
Gene Drives – Mit gentechnischer Ausrottung Menschen und Natur schützen?
Heinrich-Böll-Stiftung,  Heinrich-Böll-Stiftung,  2020.
Cellular mechanisms regulating synthetic sex ratio distortion in the Anopheles gambiae germline
R. E. Haghighat-Khah, A. Sharma, M. R. Wunderlich, G. Morselli, L. A. Marston, C. Bamikole, A. Hall, N. Kranjc, C. Taxiarchi, I. Sharakhov and R. Galizi,  Pathogens and Global Health,  114:370-378. 2020.
Vector-Focused Approaches to Curb Malaria Transmission in the Brazilian Amazon: An Overview of Current and Future Challenges and Strategies
E. M. Rocha, R. D. Katak, J. C. de Oliveira, M. D. Araujo, B. C. Carlos, R. Galizi, F. Tripet, O. Marinotti and J. A. Souza,  Tropical Medicine and Infectious Disease,  5. 2020.
Progress Toward Zygotic and Germline Gene Drives in Mice
C. Pfitzner, M. A. White, S. G. Piltz, M. Scherer, F. Adikusuma, J. N. Hughes and P. Q. Thomas,  The CRISPR Journal,  3:388-397. 2020.
Selfish genetic elements and male fertility
R. L. Verspoor, T. A. R. Price and N. Wedell,  Philosophical Transactions of the Royal Society B-Biological Sciences,  375:7. 2020.
Fruit fly breakthrough puts killer mozzies on notice
V. Tressider,  The Lighthouse,  2020.
WHO Releases a Position Statement on Genetically Modified Mosquitoes for the Control of Vector-Borne Diseases
E. R. Fletcher,  Health Policy Watch,  2020.
MGDrivE 2: A simulation framework for gene drive systems incorporating seasonality and epidemiological dynamics
S. L. Wu, J. B. Bennett, H. M. Sanchez C, A. J. Dolgert, T. M. Leon and J. M. Marshall,  bioRxiv,  2020.10.16.343376. 2020.
Genetic engineering and bacterial pathogenesis against the vectorial capacity of mosquitoes
M. Qasim, H. M. Xiao, K. He, M. A. A. Omar, F. L. Liu, S. Ahmed and F. Li,  Microbial Pathogenesis,  147:8. 2020.
FKMCD-OXITEC Mosquito Project
FKMCD and OXITEC,  Website,  2020.
Ethics and vector-borne diseases
WHO,  WHO Guidance,  2020.
Driven to Exterminate
Z. Moloo and J. Thomas,  etc group,  2020.
Florida to Release 750 Million GMO Mosquitoes in 2021
Seeker,  Seeker,  2020.
Engineered Gene Drives: Regulatory and Policy Considerations Webinar Series by The GeneConvene Global Collaborative October-December 2020
Hector Quemada and David O'Brochta,  GeneConvene Global Collaborative,  2020.
ESA Position Statement on the Importance of Continued Innovation in Gene Drive Technology
Entomological Society of America,  Annals of the Entomological Society of America,  2020.
GeneConvene Global Collaborative Webinar Series Oct-Dec 2020
Hector Quemada and David O'Brochta,  GeneConvene Global Collaborative,  2020.
Evaluation of genetically modified mosquitoes for the control of vector-borne diseases
Global Malaria Programme,  WHO - Position Statement,  2020.
Engineered Gene Drives: State of Research Webinar Series by The GeneConvene Global Collaborative September-October 2020
David O'Brochta and Hector Quemada,  GeneConvene Global Collaborative,  2020.
Stable Introduction of Plant-Virus-Inhibiting Wolbachia into Planthoppers for Rice Protection
J. T. Gong, Y. Li, T. P. Li, Y. Liang, L. Hu, D. Zhang, C. Y. Zhou, C. Yang, X. Zhang, S. S. Zha, X. Z. Duan, L. A. Baton, X. Y. Hong, A. A. Hoffmann and Z. Xi,  Current Biology,  30:4837-4845.e5. 2020.
Engineering the Composition and Fate of Wild Populations with Gene Drive
B. A. Hay, G. Oberhofer and M. Guo,  Annual Review of Entomology,  2020.
Towards rangatiratanga in pest management? Maori perspectives and frameworks on novel biotechnologies in conservation
S. Palmer, O. R. Mercier and A. King-Hunt,  Pacific Conservation Biology,  11. 2020.
Assessing the acoustic behaviour of Anopheles gambiae (s.l.) dsxF mutants: implications for vector control
M. P. Su, M. Georgiades, J. Bagi, K. Kyrou, A. Crisanti and J. T. Albert,  Parasites and Vectors,  13:507. 2020.
Yes, Irradiated Sterile Male Mosquitoes Can Be Sexually Competitive!
J. Bouyer and M. J. B. Vreysen,  Trends in Parasitology,  2020.
Microbiome Innovation in Agriculture: Development of Microbial Based Tools for Insect Pest Management
M. Qadri, S. Short, K. Gast, J. Hernandez and A. C.-N. Wong,  Frontiers in Sustainable Food Systems,  4. 2020.
Gene Drives Could Kill Mosquitoes And Suppress Herpesvirus Infections
A. Berezow,  American Council on Science and Health,  2020.
Embracing Dynamic Models for Gene Drive Management
A. J. Golnar, E. Ruell, A. L. Lloyd and K. M. Pepin,  Trends in Biotechnology,  2020.
Do Africans Want Genetically Modified Mosquitoes?
U. Effiong,  The Pursuit,  2020.
Viral gene drive in herpesviruses
M. Walter and E. Verdin,  Nature Communications,  11:4884. 2020.
You should be excited that scientists are releasing 750 million genetically modified mosquitoes this year
L. Westreich,  Massive Science,  2020.
The Con Job at Mosquito Control Board
E. Russo and B. Wray,  keysnews.com,  2020.
Gene Drive: Modern Miracle or Environmental Disaster
K. Brooks,  Journal of Law, Technology and Policy,  2020.
Can a Genetically Modified Bug Combat a Global Farm Plague?
E. Nitler,  Wired,  2020.
Resistance to natural and synthetic gene drive systems
T. A. R. Price, N. Windbichler, R. L. Unckless, A. Sutter, J.-N. Runge, P. A. Ross, A. Pomiankowski, N. L. Nuckolls, C. Montchamp-Moreau, N. Mideo, O. Y. Martin, A. Manser, M. Legros, A. M. Larracuente, L. Holman, J. Godwin, N. Gemmell, C. Courret, A. Buc,  Journal of Evolutionary Biology,  2020.
Gene drives: Navigating perils of engineered eradication, with Christoph Then.
IEAM Podcast,  Integrated Environmental Assessment and Management,  2020.
Gene Drive Control Worry Eased by Genetic Neutralizing Elements
Staff,  Genetic Engineering and Biotechnology News,  2020.
Global citizen deliberation on genome editing
J. S. Dryzek, D. Nicol, S. Niemeyer, S. Pemberton, N. Curato, A. Bächtiger, P. Batterham, B. Bedsted, S. Burall, M. Burgess, G. Burgio, Y. Castelfranchi, H. Chneiweiss, G. Church, M. Crossley, J. de Vries, M. Farooque, M. Hammond, B. He, R. Mendonça, J.,  Science,  369:1435. 2020.
Active Genetic Neutralizing Elements for Halting or Deleting Gene Drives
X.-R. S. Xu, E. A. Bulger, V. M. Gantz, C. Klanseck, S. R. Heimler, A. Auradkar, J. B. Bennett, L. A. Miller, S. Leahy, S. S. Juste, A. Buchman, O. S. Akbari, J. M. Marshall and E. Bier,  Molecular Cell,  2020.
Biologists create new genetic systems to neutralize gene drives
University of California San Diego,  ScienceDaily,  2020.
Risks of releasing gene drives mosquitoes – a possible future scenario
Testbiotech,  Testbiotech,  2020.
Dynamics of Wild and Sterile Mosquito Population Models with Delayed Releasing
L. M. Cai,  International Journal of Bifurcation and Chaos,  30:15. 2020.
A CRISPR homing gene drive targeting a haplolethal gene removes resistance alleles and successfully spreads through a cage population
J. Champer, E. Yang, E. Lee, J. Liu, A. G. Clark and P. W. Messer,  Proceedings of the National Academy of Sciences,  202004373. 2020.
Why the UK could end up deploying risky gene drives while ignoring natural biological control
J. Mathews,  GM Watch,  2020.
The Evolving Arsenal Against Mosquito-Born Diseases
J. Smith,  Labiotech.eu,  2020.
Teach Me in 10 – Gene Drive Research with Dr. Jennifer Baltzegar
J. Baltzegar,  Technology Networks,  2020.
Mutant mosquitoes: GM insects ‘engineered’ in ‘new approach to pest control’
T. Fish,  EXPRESS,  2020.
Engineering multiple species-like genetic incompatibilities in insects
M. Maselko, N. Feltman, A. Upadhyay, A. Hayward, S. Das, N. Myslicki, A. J. Peterson, M. B. O’Connor and M. J. Smanski,  Nature Communications,  11:4468. 2020.
Underlying beliefs linked to public opinion about gene drive and pest-specific toxin for pest control
E. A. MacDonald, E. Edwards, J. Balanovic and F. Medvecky,  Wildlife Research,  2020.
Engineering speciation events in insects may be used to control harmful pests
University of Minnesota,  Phys Org,  2020.
Prospects and Pitfalls: Next-Generation Tools to Control Mosquito-Transmitted Disease
E. P. Caragata, S. Dong, Y. Dong, M. L. Simões, C. V. Tikhe and G. Dimopoulos,  Annual Review of Microbiology,  74:455-475. 2020.
Generating single-sex litters: development of CRISPR-Cas9 genetic tools to produce all-male offspring
C. Douglas, V. Maciulyte, J. Zohren, D. M. Snell, O. A. Ojarikre, P. J. Ellis and J. M. A. Turner,  bioRxiv,  2020.09.07.285536. 2020.
How to fight the deadly dengue virus? Make your own mosquitoes
J. Emont,  Wall Street Journal,  2020.
Suppressing evolution in genetically engineered systems through repeated supplementation
N. C. Layman, B. M. Tuschhoff, A. J. Basinski, C. H. Remien, J. J. Bull and S. L. Nuismer,  Evolutionary Applications,  12. 2020.
GMOs make war on mosquitoes
Staff,  Kenosha News,  2020.
Maternal Transmission Ratio Distortion in Two Iberian Pig Varieties
M. Vazquez-Gomez, M. M. de Hijas-Villalba, L. Varona, N. Ibanez-Escriche, J. P. Rosas, S. Negro, J. L. Noguera and J. Casellas,  Genes,  11:16. 2020.
Scientists Evaluate Environmental Impacts of Gene Drive Organisms
Staff,  American Laboratory,  2020.
Why Genetically Modified Mosquitoes Won’t Come to Texas Anytime Soon
C. Adams,  RA News,  2020.
Inherently confinable split-drive systems in Drosophila
G. Terradas, A. B. Buchman, J. B. Bennett, I. Shriner, J. M. Marshall, O. S. Akbari and E. Bier,  bioRxiv,  2020.09.03.282079. 2020.
Responsible innovation in biotechnology: Stakeholder attitudes and implications for research policy
P. Roberts, J. Herkert and J. Kuzma,  Elementa,  2020.
Do Africans need genetically modified mosquitoes?
genetically modified, mosquito, oxitec, autocidal, SIT, perspective, malaria, gene drive synthetic, engagement,,  Mail and Guardian,  2020.
Governing New Biotechnologies for Biodiversity Conservation: Gene Drives, International Law, and Emerging Politics
J. L. Reynolds,  Global Environmental Politics,  20:28-48. 2020.
Non-GMO approach reduces cases of mosquito-borne dengue by 77%
GM Watch,  GM Watch,  2020.
An accident waiting to happen: Tech company to release 750 MILLION GMO mosquitoes in Florida to fight dengue fever
Z. Sky,  NEWSTARGET,  2020.
Genetically-modified mosquito plan offers hope for Keys, world
P. Goodman,  keynews.com,  2020.
Bacteria-Laced Mosquitoes Limit Spread of Dengue
A. Heidt,  The Scientist,  2020.
The good mosquito versus the bad
D. Datta,  Business Standard,  2020.
Gene Drive Dynamics in Natural Populations: The Importance of Density Dependence, Space, and Sex
S. Dhole, A. L. Lloyd and F. Gould,  Annual Review of Ecology, Evolution, and Systematics,  51:505-531. 2020.
Chromosome drives via CRISPR-Cas9 in yeast
H. Xu, M. Han, S. Zhou, B.-Z. Li, Y. Wu and Y.-J. Yuan,  Nature Communications,  11:4344. 2020.
Florida Will Release 750 Genetically Modified Mosquitoes to Stop Disease Spread
A. Fahmy,  verywell health,  2020.
Scientists infect mosquitoes with bacteria to stop the transmission of dengue fever in Indonesia, dropping infection rates by 77 percent
D. Avery,  Daily Mail,  2020.
GeneConvene Global Collaborative Webinar Series
David O'Brochta and Hector Quemada,  GeneConvene Global Collaborative,  2020.
Evading evolution of resistance to gene drives
R. Gomulkiewicz, M. L. Thies and J. J. Bull,  bioRxiv,  2020.
Novel combination of CRISPR-based gene drives eliminates resistance and localises spread
N. R. Faber, G. R. McFarlane, R. C. Gaynor, I. Pocrnic, C. B. A. Whitelaw and G. Gorjanc,  bioRxiv,  2020.
The mosquito strategy that could eliminate dengue
E. Callaway,  Nature,  2020.
Researchers Find New Approach To Control Dengue, Zika By Genetically Modifying Mosquitoes
N. Sharma,  R. Republicworld.com,  2020.
Australian research takes aim at dengue, another killer virus
E. Connors,  Finanacial Review,  2020.
Australian scientists slash dengue fever in Indonesia by infecting mosquitoes with bacteria
A. Barker,  ABC News,  2020.
Deep dive: Florida’s GM mosquito experiment aims to rewrite rules of vector-borne diseases
S. Kannan,  India Today,  2020.
Fighting mosquito-borne diseases… with mosquitoes
N. Gubert and A. Baubeau,  Phys Org,  2020.
Bug board OKs release of genetically modified mosquitoes
T. O'Hara,  keynews.com,  2020.
Genetically modified mosquitoes to be released in the Florida Keys to combat dengue, zika, and yellow fever.
Yucatan Times,  Yucatan Times,  2020.
Transgenic moths released to end one of the worst pests on the planet
B. Mandalia,  Pledge Times,  2020.
750 million genetically modified mosquitoes soon released in the wild!
explica,  explica,  2020.
US to Use Genetically Modified Mosquitoes to Fight Dengue Fever
H. Badr,  Asharq Al-Awsat,  2020.
Florida Keys to Use Genetically Modified Mosquitoes to Fight Disease
B. Lynn,  Voice of America,  2020.
Anthony James / Mosquito Modification
Big Picture Science,  SETI Institute,  2020.
Florida Approves Controversial Plan to Release 750 Million Genetically Modified Mosquitoes
D. Rakshit,  Swaddle,  2020.
Mutant bugs released to fight disease
The Day,  The Day,  2020.
More than 750 million GMO mosquitoes to be released over Florida Keys – what could go wrong?
E. Huff,  Natural News,  2020.
Next-generation gene drive for population modification of the malaria vector mosquito, Anopheles gambiae
R. Carballar-Lejarazú, C. Ogaugwu, T. Tushar, A. Kelsey, T. B. Pham, J. Murphy, H. Schmidt, Y. Lee, G. C. Lanzaro and A. A. James,  Proceedings of the National Academy of Sciences,  202010214. 2020.
Florida to release genetically modified mosquitoes to prevent diseases like Zika
The West News,  The West News,  2020.
A home and rescue gene drive forces its inheritance stably persisting in populations
N. P. Kandul, J. Liu, J. B. Bennett, J. M. Marshall and O. Akbari,  bioRxiv,  2020.08.21.261610. 2020.
Genetically modified mosquitoes have been OK’d for a first U.S. test flight
S. Milius,  ScienceNews,  2020.
Florida Will Release Ge­net­i­cally Modified Mos­quitoes to Fight Disease in the Keys
S. Harrell,  Spectrum News,  2020.
Florida is releasing 750 million genetically modified mosquitoes into the world. Here’s why
H. Schriber,  Deseret News,  2020.
Genetically Modified Mosquitoes To Be Released In Florida Keys
A. Snow,  The Daily Wire,  2020.
Release 750 Million Genetically Modified Mosquitoes Into the Wild, They Said
C. Delbert,  Popular Mechanics,  2020.
Florida releasing genetically modified mosquitoes to prevent diseases like Zika
N. Lanese,  LiveScience,  2020.
750 Million GM Mosquitoes Will Be Released in the Florida Keys
L. Winter,  The Scientist,  2020.
Hundreds Of Millions Of Genetically Modified Mosquitoes Approved For Release In US
J. Vibes,  Anonymous News,  2020.
Why Hundreds of Millions of Genetically Engineered Mosquitoes Will Soon Be Released in Florida
K. Gander,  Newsweek,  2020.
Florida to release genetically modified mosquitoes, detractors blast ‘Jurassic Park’ experiment
D. Aaro,  Fox News,  2020.
750 million genetically modified mosquitoes to be released across Florida Keys
A. Zahid,  Sky News,  2020.
750 million GM mosquitos set for release in Florida Keys.
Editorial Staff,  E&T,  2020.
Florida Plans to Fix Its Mosquito Problem With 750 Million More Mosquitoes
D. Noor,  Gizmodo,  2020.
Florida mosquitoes: 750 million genetically modified insects to be released
BBC,  BBC,  2020.
Florida OKs release of genetically modified mosquitoes in Keys to slow insect disease spread
S. Mann,  Just the News,  2020.
Florida Keys to release modified mosqutioes to fight illness
C. Anderson,  Associated Press,  2020.
Florida to Release Millions of Genetically Modified Mosquitoes Against Local Residents’ Wishes
N. Rice,  People,  2020.
Plan to Release 750M GMO Mosquitoes Gets Go Ahead
R. Quinn,  newser,  2020.
Mixed knobs in corn cobs
P. Lamelza and M. A. Lampson,  Genes and Development,  34:1110-1112. 2020.
Distinct kinesin motors drive two types of maize neocentromeres
K. W. Swentowsky, J. I. Gent, E. G. Lowry, V. Schubert, X. Ran, K. F. Tseng, A. E. Harkess, W. H. Qiu and R. K. Dawe,  Genes and Development,  34:1239-1251. 2020.
Lateral Gene Transfer Mechanisms and Pan-genomes in Eukaryotes
S. J. Sibbald, L. Eme, J. M. Archibald and A. J. Roger,  Trends in Parasitology,  2020.
‘A Jurassic Park Experiment’: Watchdog Groups Denounce Decision to Release Genetically Modified Mosquitoes in Florida
L. Newcomb,  Common Dreams,  2020.
Florida Keys to release 750M genetically modified mosquitoes
D. Haynes,  UPI,  2020.
FKMCD Board Approves Oxitec Pilot
C. Huff,  FKMCD in the News,  2020.
To combat disease-spreading mosquitoes in the Keys, leaders vote to unleash lab bugs
D. Goodhue,  Miami Herald,  2020.
Self-limiting paratransgenesis
W. Huang, S. B. Wang and M. Jacobs-Lorena,  PloS Neglected Tropical Diseases,  14:9. 2020.
Viewpoint: Is there a scientific basis to ban gene drive technology that can rid us of virus-carrying rodents and mosquitoes?
K. Vavitas,  Genetic Literacy Project,  2020.
Genetically Modified Mosquitoes Cleared for Florida Keys Release
J. Kay,  Bloomber Law,  2020.
Cytoplasmic incompatibility: an autocidal mechanism for mosquito population control
V. Dev,  BugBitten BMC,  2020.
Researchers’ Plan To Release Genetically Engineered American Chestnut Trees in Forests Will Set Dangerous Precedents If Approved
Global Justice Ecology Project,  Common Dreams,  2020.
Keys Mosquito Control Board Approves First U.S. Trial Of Genetically Modified Mosquitoes
N. Klingener,  WLRN,  2020.
Survival of the fit-ish
Stowers Institute for Medical Research,  Science Daily,  2020.
Towards Responsive Eco-technology: The Development of a Male Sex-biased Mouse
W. Kamau,  Massachusetts Institute of Technology,  2020.
Vector genetics, insecticide resistance and gene drives: An agent-based modeling approach to evaluate malaria transmission and elimination
P. Selvaraj, E. A. Wenger, D. Bridenbecker, N. Windbichler, J. R. Russell, J. Gerardin, C. A. Bever and M. Nikolov,  PloS Computational Biology,  16:21. 2020.
Bednets or Biotechnology: To Rescue Current Persons or Research for the Future?
D. E. Callies,  Fudan Journal of the Humanities and Social Sciences,  14. 2020.
Atypical meiosis can be adaptive in outcrossed Schizosaccharomyces pombe due to wtf meiotic drivers
M. A. Bravo Núñez, I. M. Sabbarini, L. E. Eide, R. L. Unckless and S. E. Zanders,  eLife,  9:e57936. 2020.
Modelling the suppression of a malaria vector using a CRISPR-Cas9 gene drive to reduce female fertility
A. R. North, A. Burt and H. C. J. Godfray,  BMC Biology,  18:98. 2020.
Incorporating Characteristics of Gene Drive Engineered Ae. aegypti as Methods to Reduce Dengue and Zika Virus into the Bayesian Network – Relative Risk Model, Using Ponce, Puerto Rico as a Case Study
S. R. Eikenbary,  WWU Graduate School Collection,  2020.
Engineered Reproductively Isolated Species Drive Reversible Population Replacement
A. Buchman, I. Shriner, T. Yang, J. Liu, I. Antoshechkin, J. M. Marshall, M. W. Perry and O. S. Akbari,  bioRxiv,  2020.08.09.242982. 2020.
Ubiquitous selfish toxin-antidote elements in Caenorhabditis species
E. Ben-David, P. Pliota, S. A. Widen, A. Koreshova, T. Lemus-Vergara, P. Verpukhovskiy, S. Mandali, C. Braendle, A. Burga and L. Kruglyak,  bioRxiv,  2020.08.06.240564. 2020.
Selfing is the safest sex for Caenorhabditis tropicalis
L. M. Noble, J. Yuen, L. Stevens, N. Moya, R. Persaud, M. Moscatelli, J. Jackson, C. Braendle, E. C. Andersen, H. S. Seidel and M. V. Rockman,  bioRxiv,  2020.08.07.242032. 2020.
Study Could Lead to Power Over Parasite
D. Shore,  ,  2020.
CRISPR gene drives could eliminate many vector-driven pests and diseases, but challenges remain
J. Champer,  Genetic Literacy Project,  2020.
Maintenance management and eradication of established aquatic invaders
D. Simberloff,  Hydrobiologia,  22. 2020.
Global Governing Bodies: A Pathway for Gene Drive Governance for Vector Mosquito Control
A. Kelsey, D. Stillinger, T. B. Pham, J. Murphy, S. Firth and R. Carballar-Lejarazú,  American Journal of Tropical Medicine and Hygiene,  2020.
Modeling the suppression dynamics of Aedes mosquitoes with mating inhomogeneity
M. Huang and L. Hu,  Journal of Biological Dynamics,  14:656-678. 2020.
Genomic analyses of a livestock pest, the New World screwworm, find potential targets for genetic control programs
M. J. Scott, J. B. Benoit, R. J. Davis, S. T. Bailey, V. Varga, E. O. Martinson, P. V. Hickner, Z. Syed, G. A. Cardoso, T. T. Torres, M. T. Weirauch, E. H. Scholl, A. M. Phillippy, A. Sagel, M. Vasquez, G. Quintero and S. R. Skoda,  Nature Communications,  3:424. 2020.
Fighting malaria with genetically modified mosquitoes
E. Nakkazi,  BMJ,  370:m2172. 2020.
Exploring gene drive’s role in fight against malaria
J. Conrow,  Genetic Literacy Project,  2020.
Efficient population modification gene-drive rescue system in the malaria mosquito Anopheles stephensi
A. Adolfi, V. M. Gantz, N. Jasinskiene, H.-F. Lee, K. Hwang, E. A. Bulger, A. Ramaiah, J. B. Bennett, G. Terradas, J. J. Emerson, J. M. Marshall, E. Bier and A. A. James,  bioRxiv,  2020.08.02.233056. 2020.
Biotechnologies in pest wasp control: taking the sting out of pest management for Māori businesses?
S. Palmer and O. R. Mercier,  New Genetics and Society,  2020.
Meet Cosmo, the gene-edited Crispr calf
S. D. McClain,  Capital Press,  2020.
Extensive Recombination Suppression and Epistatic Selection Causes Chromosome-Wide Differentiation of a Selfish Sex Chromosome in Drosophila pseudoobscura
Z. L. Fuller, S. A. Koury, C. J. Leonard, R. E. Young, K. Ikegami, J. Westlake, S. Richards, S. W. Schaeffer and N. Phadnis,  Genetics,  216:205. 2020.
A One-Sided Competition Mathematical Model for the Sterile Insect Technique
A. Ben Dhahbi, Y. Chargui, S. M. Boulaaras and S. Ben Khalifa,  Complexity,  2020:12. 2020.
Genetically modified mosquitoes could be released in Florida
wqad.com,  WQAD8,  2020.
Chemical controllable gene drive in Drosophila
D. Chae, J. Lee, N. Lee, K. Park, S. J. Moon and H. H. Kim,  ACS Synthetic Biology,  in press. 2020.
Can a population targeted by a CRISPR-based homing gene drive be rescued?
N. O. Rode, V. Courtier-Orgogozo and F. Débarre,  G3-Genes Genomes Genetics,  2020.
Nix alone is sufficient to convert female Aedes aegypti into fertile males and myo-sex is needed for male flight
A. Aryan, M. A. E. Anderson, J. K. Biedler, Y. M. Qi, J. M. Overcash, A. N. Naumenko, M. V. Sharakhova, C. H. Mao, Z. N. Adelman and Z. J. Tu,  Proceedings of the National Academy of Sciences of the United States of America,  117:17702-17709. 2020.
Après les OGM, la nouvelle technique du forçage génétique inquiète écologistes et scientifiques
H. Leussier,  Reporterre,  2020.
Why are scientists creating genetically modified mosquitoes?
The Week Staff,  The Week,  2020.
The Biochemistry of Cytoplasmic Incompatibility Caused by Endosymbiotic Bacteria
H. Chen, M. Zhang and M. Hochstrasser,  Genes,  11. 2020.
The future of beef might be a sausage fest
N. Johnson,  grist,  2020.
Meet Cosmo the Frankenbull: Scientists genetically engineer a bull calf so that 75 per cent of its offspring will be male
J. Pinkstone,  Daily Mail,  2020.
The potential for a CRISPR gene drive to eradicate or suppress globally invasive social wasps
P. J. Lester, M. Bulgarella, J. W. Baty, P. K. Dearden, J. Guhlin and J. M. Kean,  Scientific Reports,  10:12398. 2020.
A Crispr calf is born. It’s definitely a boy
M. Molteni,  WIRED,  2020.
Meet the first genetically modified bull. Why did scientists change it
J. Kessler,  Free News,  2020.
Scientists use CRISPR technology to insert sex-determining gene
A. Quinton,  Phys Org,  2020.
Tackling Dengue fever by turning female mosquitoes into males
T. Sandle,  DIGTAL JOURNAL,  2020.
Lettre ouverte a Monsieur le Premier Ministre demandant l’interdiction de la production, de l’utilisation et de la dissémination de tout OGM issu du forçage génétique
A. Bossu, N. Laarman, D. Houdebine, H. Le Meur, F. Jacquemart and F. Warlop,  Open Letter,  2020.
Florida Keys delays vote on release of 750 million genetically engineered mosquitoes after public outcry
D. Dukule,  Friends of the Earth,  2020.
Release of genetically modified mosquitoes in the Florida Keys put on hold
D. Goodhue,  Miami Herald,  2020.
Providing a policy framework for responsible gene drive research: an analysis of the existing governance landscape and priority areas for further research
D. Thizy, I. Coche and J. de Vries,  Wellcome Open Research,  2020.
EPA approves field trials of genetically modified mosquito
A. Wernick,  WBFO npr,  2020.
How do you make a gene drive mosquito?
GeneConvene Virtual Institute,  GeneConvene Global Collaborative,  2020.
An argument for gene drive technology to genetically control populations of insects like mosquitoes and locusts
I. Ronai and B. Lovett,  The Conversation,  2020.
Researchers convert female mosquitoes to nonbiting males with implications for mosquito control
Virginia Tech,  ScienceDaily,  2020.
Genome Editing in Food and Farming: Risks and unexpected consequences
J. Cotter and D. Perls,  Canadian Biotechnology Action Network,  2020.
Socrates Untenured: Ethics, Experts, and the Public in the Synthetic Age
C. Preston,  ISSUES in Science and Technology,  2020.
Genome Editing 2020: Ethics and Human Rights in Germline Editing in Humans and Gene Drives in Mosquitoes
G. J. Annas,  American Journal of Law and Medicine,  46:143-165. 2020.
CSOs raise alarm over genetically-engineered mosquitoes in Nigeria
A. Oboh,  Vanguard,  2020.
3 innovative technologies stopping malaria
B. Muni,  The Borgen Project,  2020.
On Nonlinear Pest/Vector Control via the Sterile Insect Technique: Impact of Residual Fertility
M. S. Aronna and Y. Dumont,  Bulletin of Mathematical Biology,  82:29. 2020.
2-Locus Cleave and Rescue; selfish elements harness a recombination rate-dependent generational clock for self limiting gene drive
G. Oberhofer, T. Ivy and B. A. Hay,  bioRxiv,  2020.
Groups warn against release of genetically-engineered mosquitoes in Nigeria
C. Onyesi,  Daily Post,  2020.
Beyone the buzz
C. Watson,  The Journal Gazette,  2020.
Maternal effect killing by a supergene controlling ant social organization
A. Avril, J. Purcell, S. Béniguel and M. Chapuisat,  Proceedings of the National Academy of Sciences,  2020.
Artificial Selection Finds New Hypotheses for the Mechanism of Wolbachia-Mediated Dengue Blocking in Mosquitoes
S. A. Ford, I. Albert, S. L. Allen, S. F. Chenoweth, M. Jones, C. Koh, A. Sebastian, L. T. Sigle and E. A. McGraw,  Frontiers in Microbiology,  11:1456. 2020.
Malaria: Over 75 CSOs raise alarm over plans to release nautically engineered mosquitoes
News Agency of Nigeria,  WorldStage,  2020.
NGOs call for moratorium on controversial ‘gene drive organisms’
N. Foote,  EURACTIV,  2020.
GMO Mosquitoes to be launched in Florida
Administration,  Editorials 360,  2020.
Small-Molecule Control of Super-Mendelian Inheritance in Gene Drives
V. López Del Amo, B. S. Leger, K. J. Cox, S. Gill, A. L. Bishop, G. D. Scanlon, J. A. Walker, V. M. Gantz and A. Choudhary,  Cell Reports,  31:107841. 2020.
Invasion and maintenance of spore killers in populations of ascomycete fungi
I. Martinossi-Allibert, C. Veller, S. L. Ament-Velásquez, A. A. Vogan, C. Rueffler and H. Johannesson,  bioRxiv,  2020.04.06.026989. 2020.
Nigerian government restates commitment to safety in applying modern biotechnology
Agencies,  today ng,  2020.
Please support a global moratorium on the environmental release of gene drive organisms
J. Riss, J. Munic and B. Harlin,  Open Letter,  2020.
Soon we’ll be able to engineer the wild, can the policies keep up with the science?
M. Montague and A. Kobokovich,  The Hill,  2020.
Role of gene drives in malaria elimination strategy: modeling impact and cost-effectiveness in the Democratic Republic of the Congo
N. Metchanun, C. Borgemeister, J. von Braun, M. Nikolov, P. Selvaraj and J. Gerardin,  medRxiv,  2020.
Can natural gene drives be part of future fungal pathogen control strategies in plants?
D. M. Gardiner, A. Rusu, L. Barrett, G. C. Hunter and K. Kazan,  New Phtologist,  2020.
Translating gene drive science to promote linguistic diversity in community and stakeholder engagement
C. Cheung, S. Gamez, R. Carballar-Lejarazú, V. Ferman, V. N. Vásquez, G. Terradas, J. Ishikawa, C. E. Schairer, E. Bier, J. M. Marshall, A. A. James, O. S. Akbari and C. S. Bloss,  Global Public Health,  2020.
Who is afraid of genetically modified mosquitoes?
G. Odogwu,  The PUNCH,  2020.
Mosquito district workshop focuses on Keys trials
S. Matthis,  KEYSWEEKLY,  2020.
Genetically modified mosquitoes to be released in Florida and Texas
O. Ron,  The Jerusalem Post,  2020.
Before genetically modified mosquitoes are released, we need a better EPA
N. Kofler and J. Kuzma,  The Boston Globe,  2020.
Development of zygotic and germline gene drives in mice
C. Pfitzner, J. N. Hughes, M. A. White, M. Scherer, S. G. Piltz and P. Q. Thomas,  bioRxiv,  2020.
Florida gives approval to the plan of releasing genetically modified mosquitoes.
V. Dalmia,  The Andoverleader,  2020.
Analysis of a Strong Suppressor of Segregation Distorter inDrosophila melanogaster
R. G. Temin,  Genetics,  215:1085-1105. 2020.
Are Genetically Modified Mosquitoes Coming To Florida?
M. Taylor,  Y100,  2020.
The Florida Keys are one step closer to getting genetically modified mosquitoes
D. Goodhue,  Miami Herald,  2020.
Genetically Modified Mosquitoes Approved For Insect Population Control In The U.S.
J. Blum,  HUFFPOST,  2020.
Florida says ‘this is fine’ to release of genetically modified mosquitoes
J. K. Elliot,  Global News,  2020.
Plan to Release GMO Mosquitoes Moves Ahead
A. Dier,  newser,  2020.
Genetically engineered mosquitoes get EPA approval for Florida release despite objections from environmental groups
S. LaMotte,  CNN Health,  2020.
Florida Keys plans killer insect attack on disease-carrying mosquitoes
P. Brinkmann,  UPI,  2020.
Research team genetically modifies mosquito; now completing construction of full gene drive system
University of Hawaii,  UH Hilo News,  2020.
Genetic breakdown of a Tet-off conditional lethality system for insect population control
Y. Zhao, M. F. Schetelig and A. M. Handler,  Nature Communications,  11:3095. 2020.
Detecting the population dynamics of an autosomal sex ratio distorter transgene in malaria vector mosquitoes
P. Pollegioni, A. R. North, T. Persampieri, A. Bucci, R. L. Minuz, D. A. Groneberg, T. Nolan, P. A. Papathanos, A. Crisanti and R. Muller,  Journal of Applied Ecology,  11. 2020.
Plan to release genetically modified mosquitoes in Florida gets go-ahead
O. Milman,  The Guardian,  2020.
Gene Drive Webinars -ENSSER, CSS, VDW and SC
European Network of Scientists for Social and Environmental Responsibility,  ,  2020.
Field performance of sterile male mosquitoes released from an uncrewed aerial vehicle
J. Bouyer, N. J. Culbert, A. H. Dicko, M. G. Pacheco, J. Virginio, M. C. Pedrosa, L. Garziera, A. T. M. Pinto, A. Klaptocz, J. Germann, T. Wallner, G. Salvador-Herranz, R. A. Herrero, H. Yamada, F. Balestrino and M. J. B. Vreysen,  Science Robotics,  5:10. 2020.
EPA faces suit over plan to release genetically engineered mosquitoes
R. Frazin,  The Hill,  2020.
Species Extinction & the Case for a Global Moratorium on Gene Drives
M. Imken,  ARC,  2020.
Fact check: Genetically modified mosquitoes are cleared for release in the US
A. Staver,  USA Today,  2020.
The need for new vector control approaches targeting outdoor biting anopheline malaria vector communities
S. Sougoufara, E. C. Ottih and F. Tripet,  Parasites & Vectors,  13:15. 2020.
Gene Drive: Can this be the Future of Agricultural Pest Management?
P. Mondal, U. Mohapatra and M. Ganguly,  International Journal of Current Microbiology and Applied Sciences,  9. 2020.
Scientists hope to release genetically-modified mosquitoes
Fox 13,  Fox 13,  2020.
Scientist fight plant to release gene-hacked mosquitoes in TX, FL.
D. Robitzski,  Futurism,  2020.
Jonathan Latham on Gene Drives and the Gates Foundation
James Corbett,  The Corbett Report,  2020.
Company Receives Permit To Release Swarm Of Genetically Modified Mosquitoes In Florida
I. Monzon,  International Business Times,  2020.
What else could 2020 bring to Florida? Genetically altered, lab bred mosquitoes
J. Haughey,  The Center Square,  2020.
BUZZ OFF! Swarm of MILLIONS of gene-hacked mosquitoes will be unleashed across USA – to wipe out malaria with ‘death sex’
H. Pettit,  The Sun,  2020.
Fighting malaria with gene-drive technology
EarthWise,  earthwise radio,  2020.
Conservation implications of disease control
J. C. Buck, S. B. Weinstein, G. Titcomb and H. S. Young,  Frontiers in Ecology and the Environment,  6. 2020.
Meiotic drive
A. N. Srinivasa and S. E. Zanders,  Current Biology,  30:R627-R629. 2020.
Mosquitoes engineered to resist the malaria parasite
Anonymous,  Lab+Life Scientist,  2020.
Genetically Modified Mosquitoes Cleared For Release In The US
M. Horowitz,  Anonymous News,  2020.
Motivations and expectations driving community participation in entomological research projects: Target Malaria as a case study in Bana, Western Burkina Faso
N. Barry, P. Toé, L. Pare Toe, J. Lezaun, M. Drabo, R. K. Dabiré and A. Diabate,  Malaria Journal,  19:199. 2020.
Gene drives: benefits, risks, and possible applications
A. Deplazes-Zemp, U. Grossniklaus, F. Lefort, P. Müller, J. Romeis, A. Rüegsegger, N. Schoenenberger and E. Spehn,  Swiss Academies Factsheets,  15. 2020.
CRISPR/Cas9 gene drive technology to control transmission of vector-borne parasitic infections
M. Nateghi Rostami,  Parasite Immunology,  preprint:e12762. 2020.
Genetically modified mosquitoes could be released in Florida and Texas beginning this summer – silver bullet or jumping the gun?
B. Allan, C. Stone, H. Tuten, J. Kuzma and N. Kofler,  The Conversation,  2020.
Can CRISPR gene drive work in pest and beneficial haplodiploid species?
J. Li, O. Aidlin Harari, A.-L. Doss, L. L. Walling, P. W. Atkinson, S. Morin and B. E. Tabashnik,  Evolutionary Applications,  2020.
Islands as Laboratories: Indigenous Knowledge and Gene Drives in the Pacific
R. I. Taitingfong,  Human Biology,  91:179-188. 2020.
A Protamine Knockdown Mimics the Function of Sd in Drosophila melanogaster
L. F. Gingell and J. R. McLean,  G3-Genes Genomes Genetics,  10:2111-2115. 2020.
Position Paper on Integrated Vector Management: Strengthening AU Members’ Regulatory Capacities for Responsible Research Towards Elimination of Malaria in Africa
African Union Development Agency - NEPAD,  AUDA-NEPAD,  2020.
Bioengineering horizon scan 2020
L. Kemp, L. Adam, C. R. Boehm, R. Breitling, R. Casagrande, M. Dando, A. Djikeng, N. G. Evans, R. Hammond, K. Hills, L. A. Holt, T. Kuiken, A. Markotić, P. Millett, J. A. Napier, C. Nelson, S. S. ÓhÉigeartaigh, A. Osbourn, M. J. Palmer, N. J. Patron, E. P,  eLife,  9:e54489. 2020.
‘Just Add Water’ GM Mosquitoes Suppress Wild Population by 95%
H. Alber,  ,  2020.
Simulation models from: Can CRISPER-mediated gene drive work in pest and beneficial haplodiploid species?
J. Li and B. Tabashnik,  Dryad,  2020.
America’s Never-Ending Battle Against Flesh-Eating Worms
S. Zhang,  The Atlantic,  2020.
New study highlights success of gene drive technology with preventing mosquito-spread diseases
A. Meckler-Pacheco,  The California Aggie,  2020.
Genetic Biocontrol for Invasive Species
J. L. Teem, L. Alphey, S. Descamps, M. P. Edgington, O. Edwards, N. Gemmell, T. Harvey-Samuel, R. L. Melnick, K. P. Oh, A. J. Piaggio, J. R. Saah, D. Schill, P. Thomas, T. Smith and A. Roberts,  Frontiers in Bioengineering and Biotechnology,  8:452. 2020.
RNAi: Applications in Vertebrate Pest Management
K. E. Horak,  Trends in Biotechnology,  38:1200-1202. 2020.
The Y Chromosome as a Battleground for Intragenomic Conflict
D. Bachtrog,  Trends in Genetics,  2020.
Gene Drives: Pursuing opportunities, minimizing risk
K. L. Warmbrod, A. Kobokovich, R. West, G. Ray, M. Trotochaud and M. Montague,  Center for Health Security,  2020.
Le forçage génétique (gène drive) et ses applications
V. Courtier-Orgogozo,  Bulletin de l'Académie Vétérinaire de France,  172:94-98. 2020.
Hope rises as scientists eliminate malaria mosquitoes
A. Adeyemi,  New Telegraph,  2020.
Recessive Z-linked lethals and the retention of haplotype diversity in a captive butterfly population
I. J. Saccheri, S. Whiteford, C. J. Yung and A. E. van't Hof,  Heredity,  2020.
Malaria mosquitoes eliminated in lab by creating all-male offsprings
Aishwarya,  Inshorts,  2020.
Researchers use “gene drive” technology to eliminate malaria mosquitoes in lab experiments
J. Ives,  News Medical Life Sciences,  2020.
Genetically-manipulated male mosquitoes could eliminate females
B. Coxworth,  New Atlas,  2020.
Researchers discover way to eliminate malaria carrying mosquitoes
S. Digon,  International Business Times,  2020.
Modeling confinement and reversibility of threshold-dependent gene drive systems in spatially-explicit Aedes aegypti populations
H. M. Sánchez C, J. B. Bennett, S. L. Wu, G. Rašić, O. S. Akbari and J. M. Marshall,  BMC Biology,  18:50. 2020.
Public opinion on gene editing
P. Thomas,  The Ecologist,  2020.
The malaria mosquito is eliminated in the lab by creating a population of all males
NewsDesk,  Instant,  2020.
Malaria mosquitoes eliminated in lab by creating all male populations
H. Dunning,  Imperial College London,  2020.
A male-biased sex-distorter gene drive for the human malaria vector Anopheles gambiae
A. Simoni, A. M. Hammond, A. K. Beaghton, R. Galizi, C. Taxiarchi, K. Kyrou, D. Meacci, M. Gribble, G. Morselli, A. Burt, T. Nolan and A. Crisanti,  Nature Biotechnology,  2020.
Converting endogenous genes of the malaria mosquito into simple non-autonomous gene drives for population replacement
A. Hoermann, S. Tapanelli, P. Capriotti, E. K. G. Masters, T. Habtewold, G. K. Christophides and N. Windbichler,  bioRxiv,  2020.
Gene drive dynamics in natural populations: The importance of density-dependence, space and sex
S. Dhole, A. L. Lloyd and F. Gould,  arXiv,  arXiv:2005.01838. 2020.
EPA Approves Genetically Modified Mosquito Trial For Florida Keys
Nancy Klingener,  WLRN,  2020.
The EU not ready for the release of Gene drive organisms into the environment.
Pensoft Publishers,  ScienceDaily,  2020.
Mutant mosquitoes one step closer to release in Florida, Texas this summer. Why?
K. Camero,  The Charlotte Observer,  2020.
US EPA OKs release of GM mosquitoes
A. Beer,  Agrow Agribusiness,  2020.
Genetically Engineered Male Mosquitos to be Released in Florida and Other Parts of US to Curb Zika and Dengue Spread
Staff Reporter,  The Science Times,  2020.
Swarms of genetically modified mosquitoes could soon be descending on Florida
A. J. Dellinger,  Mic,  2020.
Beyond limits – the pitfalls of global gene drives for environmental risk assessment in the European Union
M. Dolezel, C. Lüthi and H. Gaugitsch,  BioRisk,  15:1-29. 2020.
The development of complex and controversial innovations. Genetically modified mosquitoes for malaria eradication
V. Cisnetto and J. Barlow,  Research Policy,  49:103917. 2020.
EPA Grants First Permit to Test Genetically Modified Mosquitoes
Adam Allington,  Bloomberg Law,  2020.
EPA Approves Experimental Use Permit to Test Innovative Biopesticide Tool to Better Protect Public Health
EPA,  EPA,  2020.
EFSA discusses risk assessment of gene drives
C. Then,  Testbiotech,  2020.
Gene drive outcomes not determined by genetic variation – A Podcast
Thomas Locke,  Malaria Minute,  2020.
Alternative Techniques and Options for Risk Reduction of Gene Drives
Bernd Giese, Arnim von Gleich and Johannes L. Frieß,  Gene Drives at Tipping Points,  2020.
Limits of Knowledge and Tipping Points in the Risk Assessment of Gene Drive Organisms
Arnim von Gleich and Winfried Schröder,  Gene Drives at Tipping Points,  2020.
Steps Towards a Precautionary Risk Governance of SPAGE Technologies Including Gene-Drives
Arnim von Gleich,  Gene Drives at Tipping Points,  2020.
Model Concepts for Gene Drive Dynamics
Johnannes L. Frieß, Merle Preu and Broder Breckling,  Gene Drives at Tipping Points,  2020.
Case Study 2: Oilseed Rape (Brassica napus L.)
Johnannes L. Frieß, Broder Breckling, Kathrin Pascher and Windfried Schröder,  Gene Drives at Tipping Points,  2020.
Case Study 1: Olive Fruit Fly (Bactrocera oleae)
Merle Preu, Johannes L. Frieß, Broder Breckling and Winfried Schröder,  Gene Drives at Tipping Points,  2020.
Vulnerability Analysis of Ecological Systems
Carina R. Lalyer, Arnim von gleich, Bernd Giese,  Gene Drives at Tipping Points,  2020.
Gene Drives Touching Tipping Points
Brodee Breckling, Arnim von Gleich,,  Gene Drives at Tipping Points,  2020.
Technology Characterisation
Johannes L. Frieß, Bernd Giese, Arnim von Gleich,  Gene Drives at Tipping Point,  2020.
Gene Drives at Tipping Points
Amin von Gleich and Winfried Schroder,  Gene Drives at Tipping Points,  2020.
The Enterprise: A massive transposon carrying Spokt meiotic drive genes
A. A. Vogan, S. L. Ament-Velásquez, E. Bastiaans, O. Wallerman, S. J. Saupe, A. Suh and H. Johannesson,  bioRxiv,  2020.03.25.007153. 2020.
The yeast mating-type switching endonuclease HO is a domesticated member of an unorthodox homing genetic element family
A. Y. Coughlan, L. Lombardi, S. Braun-Galleani, A. A. R. Martos, V. Galeote, F. Bigey, S. Dequin, K. P. Byrne and K. H. Wolfe,  eLife,  9:e55336. 2020.
GeneTip project results published in full
C. Then,  Testbiotech,  2020.
Genetic Biocontrol – An Overview
GeneConvene Global Collaborative,,  GeneConvene Global Collaborative,  2020.
Guidance Framework for Testing the Sterile Insect Technique as a Vector Control Tool against Aedes-Borne Diseases
WHO & IAEA,  WHO & IAEA,  2020.
Mosquito-Borne Diseases Emergence/Resurgence and How to Effectively Control It Biologically
H. Dahmana and O. Mediannikov,  Pathogens,  9:26. 2020.
Opinions of key stakeholders on alternative interventions for malaria control and elimination in Tanzania
M. F. Finda, N. Christofides, J. Lezaun, B. Tarimo, P. Chaki, A. H. Kelly, N. Kapologwe, P. Kazyoba, B. Emidi and F. O. Okumu,  Malaria Journal,  19:164. 2020.
Pest control with genetically modified insects
myScience,  myScience,  2020.
Super-Mendelian inheritance mediated by CRISPR-Cas9 in the female mouse germline
H. A. Grunwald, V. M. Gantz, G. Poplawski, X.-r. S. Xu, E. Bier and K. L. Cooper,  TAGC 2020,  2020.
Can we kill the dreaded mosquito? Do we even want to?
Stacey McKenna,  Sierra,  2020.
Gene drives as a gene modification tool. A scientific overview.
Ashan Ali,  TechnologyTimes,  2020.
Controversial ‘gene drive’ could disarm deadly wheat pathogen
Elizabeth Pennisi,  Science,  2020.
What is a gene drive?
Donayvn Coffer,  LiveScience,  2020.
Genetic variation not an obstacle to gene drive strategy to control mosquitoes
University of California Davis,  ScienceDaily,  2020.
Gene editing and the war against malaria
E. Bier and E. Sobber,  American Scientist,  102:162. 2020.
Report of the ad hoc technical expert group on risk assessment
Ad Hoc Technical Expert Group on Risk Assessment,  Convention on Biological Diversity,  2020.
Development and testing of a novel killer–rescue self-limiting gene drive system in Drosophila melanogaster
S. H. Webster, M. R. Vella and M. J. Scott,  Proceedings of the Royal Society B: Biological Sciences,  287:20192994. 2020.
Gene Drive Basics – Characteristics and Properties
GeneConvene Global Collaborative,  GeneConvene Global Collaborative,  2020.
Gene editing could fight malaria by causing only male mosquitos to be born
L. Dormehl,  Digital Trends,  2020.
GENE DRIVE ORGANISMS: Implications for the environment and nature conservation
M. Dolezel, S. Simon, M. Otto, M. Engelhard and W. Zughart,  Umweltbundesamt,  2020.
Selfish genes and sexual selection: the impact of genomic parasites on host reproduction
N. Wedell,  Journal of Zoology,  311:1-12. 2020.
Spatio-temporal controllability and environmental risk assessment of genetically engineered gene drive organisms from the perspective of EU GMO Regulation
C. Then, K. Kawall and N. Valenzuela,  Integrated Environmental Assessment and Management,  2020.
Natural gene drives offer potential pathogen control strategies in plants
D. M. Gardiner, A. Rusu, L. Barrett, G. C. Hunter and K. Kazan,  bioRxiv,  2020.
Efficient production of male Wolbachia-infected Aedes aegypti mosquitoes enables large-scale suppression of wild populations
J. E. Crawford, D. W. Clarke, V. Criswell, M. Desnoyer, D. Cornel, B. Deegan, K. Gong, K. C. Hopkins, P. Howell, et al.,  Nature Biotechnology,  38:482-492. 2020.
Engineering multiple species-like genetic incompatibilities in insects
M. Maselko, N. Feltman, A. Upadhyay, A. Hayward, S. Das, N. Myslicki, A. J. Peterson, M. B. O’Connor and M. J. Smanski,  bioRxiv,  2020.
Gene drive and resilience through renewal with next generation Cleave and Rescue selfish genetic elements
G. Oberhofer, T. Ivy and B. A. Hay,  Proceedings of the National Academy of Sciences,  117:9013-9021. 2020.
Bioethical issues in genome editing by CRISPR-Cas9 technology
F. B. Ayanoglu, A. E. Elcin and Y. M. Elcin,  Turkish Journal of Biology,  44:110-120. 2020.
Gene drives could stop the world’s oldest problems
Chloe Willianms,  Inverse,  2020.
Auditing preparedness for vector control field studies
C. M. Collins and M. M. Quinlan,  American Journal of Tropical Medicine and Hygiene,  102:707-710. 2020.
Underdominance
GeneConvene Global Collaborative,  GeneConvene Global Collaborative,  2020.
Development of control and sterilization technology for bluegill by genome editing
M. A. Madsen,  Nippon Suisan Gakkaishi,  86:100-100. 2020.
Male-biased adult production of the striped fruit fly, Zeugodacus scutellata, by feeding dsRNA fpecific to Transformer-2
M. A. Al Baki, M. Vatanparast and Y. Kim,  Insects,  11:211. 2020.
The value of existing regulatory frameworks for the environmental risk assessment of agricultural pest control using gene drive
J. Romeis, J. Collatz, D. C. M. Glandorf and M. B. Bonsall,  Environmental Science & Policy,  108:19-36. 2020.
Strategies for Achieving Gene Drive – Gonotaxis
GeneConvene Global Collaborative,  GeneConvene Global Collaborative,  2020.
‘Gene Drive’ to curb malaria raises ethical questions as well
Gyanedra Nath Mitra,  The Pioneer,  2020.
Strategies for Achieving Gene Drive – Interference
GeneConvene Global Collaborative,  GeneConvene Global Collaborative,  2020.
Should the humans be allowed to genetically modify insects?
Olivia Abbe,  NYK Daily,  2020.
Editorial Expression of Concern: Transgenic Aedes aegypti Mosquitoes Transfer Genes into a Natural Population
B. R. Evans, P. Kotsakiozi, A. L. Costa-Da-Silva, R. S. Ioshino, L. Garziera, M. C. Pedrosa, A. Malavasi, J. F. Virginio, M. L. Capurro and J. R. Powell,  Scientific Reports,  10:2. 2020.
Strategies for Achieving Gene Drive – Over-Replication
GeneConvene Global Collaborative,  GeneConvene Global Collaborative,  2020.
Experimental manipulation of selfish genetic elements links genes to microbial community function
S. D. Quistad, G. Doulcier and P. B. Rainey,  Philosophical Transactions of the Royal Society B-Biological Sciences,  375:12. 2020.
Can a population targeted by a CRISPR-based homing gene drive be rescued?
N. O. Rode, V. Courtier-Orgogozo and F. Débarre,  bioRxiv,  2020.03.17.995829. 2020.
Gene Drive – The Concept Explained
GeneConvene Global Collaborative,  GeneConvene Global Collaborative,  2020.
Simulating effects of fitness and dispersal on the use of Trojan sex chromosomes for the management of invasive species
C. C. Day, E. L. Landguth, R. K. Simmons, W. P. Baker, A. R. Whiteley, P. M. Lukacs and A. Bearlin,  Journal of Applied Ecology,  2020.
Computational and experimental performance of CRISPR homing gene drive strategies with multiplexed gRNAs
S. E. Champer, S. Y. Oh, C. Liu, Z. Wen, A. G. Clark, P. W. Messer and J. Champer,  Science Advances,  6:eaaz0525. 2020.
Anti-CRISPR protein applications: natural brakes for CRISPR-Cas technologies
Marino, N. D., Pinilla-Redondo, R. , Csorgo, B., Bondy-Denomy, J.,  Nature Methods,  2020.
Abundance of conserved CRISPR-Cas9 target sites within the highly polymorphic genomes of Anopheles and Aedes mosquitoes
H. Schmidt, T. C. Collier, M. J. Hanemaaijer, P. D. Houston, Y. Lee and G. C. Lanzaro,  Nature Communications,  11. 2020.
The risks of using gene drives to get rid of ‘pesky species’
R. Lewis,  Genetic Literacy Project,  2020.
A fly model establishes distinct mechanisms for synthetic CRISPR/Cas9 sex distorters
B. Fasulo, A. Meccariello, M. Morgan, C. Borufka, P. A. Papathanos and N. Windbichler,  PLOS Genetics,  16:e1008647. 2020.
Performance analysis of novel toxin-antidote CRISPR gene drive systems
J. Champer, I. K. Kim, S. E. Champer, A. G. Clark and P. W. Messer,  BMC Biology,  18:27. 2020.
Stakeholder workshop “Problem formulation for the environmental risk assessment of gene drive modified insects” (15 May 2019, Brussels)
European Food Safety, A., Devos, Y., Gallani, B. & Firbank, L. G,  A. European Food Safety, Y. Devos, B. Gallani and L. G. Firbank,  17:1819E. 2020.
NZ’s great pest-free quest: can we get there?
J. Morton,  NZ Herald,  2020.
Toward the definition of efficacy and safety criteria for advancing gene drive-modified mosquitoes to field testing
S. L. James, J. M. Marshall, G. K. Christophides, F. O. Okumu and T. Nolan,  Vector Borne and Zoonotic Diseases,  2020.
Population-level multiplexing: A promising strategy to manage the evolution of resistance against gene drives targeting a neutral locus
M. P. Edgington, T. Harvey-Samuel and L. Alphey,  Evolutionary Applications,  10. 2020.
What squirrels can teach us about why, when, and how to use gene drives
Rebecca Nesbit,  synbiobeta,  2020.
A unifying approach to gene drive
P. Verma, R. Reeves and C. S. Gokhale,  bioRxiv,  2020.02.28.970103. 2020.
Evaluating the Probability of CRISPR-based Gene Drive Contaminating Another Species
V. Courtier-Orgogozo, A. Danchin, P.-H. Gouyon and C. Boëte,  Evolutionary Applications,  Early Online. 2020.
Risk assessment challenges of synthetic gene drive organisms
E. Sirinathsinghji,  TWN Biosafety Briefing,  2020.
Risk assessment challenges of synthetic gene drive organisms
E. Sirinathsinghji,  TWN Biosafety Briefing,  2020.
Public health concerns over gene-drive mosquitoes: will future use of gene-drive snails for schistosomiasis control gain increased level of community acceptance?
D. O. Famakinde,  Pathogens and Global Health,  2020.
The Buzz About Genetically Modified Mosquitoes – a podcast
The Scientist Creative Services Team,  The Scientist,  podcast. 2020.
Understanding the Science of Gene Drive and the Potential for an Improved Crop Pest Control System in Nigeria
A. Isah and R. S. M. Gidado,  OFAB Nigeria,  2020.
Gene Drives: New and Improved
R. M. Friedman, J. M. Marshall and O. S. Akbari,  Issues in Science and Technology,  36:1-7. 2020.
Genome engineering in insects: focus on the CRISPR/Cas9 system
Hillary, V. Edwin Ceasar, Stanislaus Antony Ignacimuthu, S.,  Genome Engineering via CRISPR-Cas9 System,  2020.
Modeling the impacts of a simple meiotic gene drive on small, homeostatic populations
K. R. Pilkiewicz and M. L. Mayo,  Physical Review E,  101:11. 2020.
What is gene drives about?
EFSA,  EFSAchannel,  2020.
Digital droplet PCR and IDAA for the detection of CRISPR indel edits in the malaria species Anopheles stephensi
R. R. Carballar-Lejarazu, A. Kelsey, T. B. Pham, E. P. Bennett and A. A. James-Lejarazu, A. Kelsey, T. B. Pham, E. P. Bennett and A. A. James,  Biotechniques,  68:172-179. 2020.
Genetically engineered moths may save kale chips
C. Poku,  BIOtechNOW,  2020.
Dramatically diverse Schizosaccharomyces pombe wtf meiotic drivers all display high gamete-killing efficiency
M. A. Bravo Núñez, I. M. Sabbarini, M. T. Eickbush, Y. Liang, J. J. Lange, A. M. Kent and S. E. Zanders,  PLOS Genetics,  16:e1008350. 2020.
Progress towards engineering gene drives for population control
R. R. Raban, J. M. Marshall and O. S. Akbari,  The Journal of Experimental Biology,  223:jeb208181. 2020.
Vector genetics, insecticide resistance and gene drives: an agent-based modeling approach to evaluate malaria transmission and elimination
P. Selvaraj, E. A. Wenger, D. Bridenbecker, N. Windbichler, J. R. Russell, J. Gerardin, C. A. Bever and M. Nikolov,  bioRxiv,  2020.01.27.920421. 2020.
Phased Conditional Approach for Mosquito Management Using Sterile Insect Technique
J. Bouyer, H. Yamada, R. Pereira, K. Bourtzis and M. J. B. Vreysen,  Trends in Parasitology,  2020.
Genetic Variation and Potential for Resistance Development to the tTA Overexpression Lethal System in Insects
K. E. Knudsen, W. R. Reid, T. M. Barbour, L. M. Bowes, J. Duncan, E. Philpott, S. Potter and M. J. Scott,  G3: Genes|Genomes|Genetics,  Early Online:g3.400990.2020. 2020.
Genetically engineered moths have been released into the wild to wipe out pests
K. Rogers,  CNN,  2020.
Engineering Bugs, Resurrecting Species: The Wild World of Synthetic Biology for Conservation
P. Rejcek,  Singularity Hub,  2020.
Genetically modified butterflies could herald a new era in crop protection
Science News,,  Science News,  2020.
Engineered symbionts activate honey bee immunity and limit pathogens
P. Leonard Sean, J. E. Powell, J. Perutka, P. Geng, C. Heckmann Luke, D. Horak Richard, W. Davies Bryan, D. Ellington Andrew, E. Barrick Jeffrey and A. Moran Nancy,  Science,  367:573-576. 2020.
Gene technologies in weed management: a technical feasibility analysis
N. Kumaran, A. Choudhary, M. Legros, A. W. Sheppard, L. G. Barrett, D. M. Gardiner and S. Raghu,  Current Opinion in Insect Science,  38:6-14. 2020.
World’s First Genetically Modified Moths Released to Nature
M. Cage,  SOMAG News,  2020.
An introgressed gene causes meiotic drive in Neurospora sitophila
J. Svedberg, A. A. Vogan, N. A. Rhoades, D. Sarmarajeewa, D. J. Jacobson, M. Lascoux, T. M. Hammond and H. Johannesson,  bioRxiv,  2020.01.29.923946. 2020.
GMO diamondback moth shows promise as sustainable pest control tool in first ever open-field release
Cornell University,  Genetic Literacy Project,  2020.
Scientists have released genetically modified moths
N. Kumar,  The Times Hub,  2020.
GM Insects on the Horizon
E. Unglesbee,  Progressive Farmer,  2020.
Male moths genetically modified to kill females released in the wild
M. Le Page,  New Scientist,  2020.
First Field Release of a Genetically Engineered, Self-Limiting Agricultural Pest Insect: Evaluating Its Potential for Future Crop Protection
A. M. Shelton, S. J. Long, A. S. Walker, M. Bolton, H. L. Collins, L. Revuelta, L. M. Johnson and N. I. Morrison,  Frontiers in Bioengineering and Biotechnology,  7:1-15. 2020.
Autosomal suppression and fitness costs of an old driving X chromosome in Drosophila testacea
G. Keais, S. Lu and S. Perlman,  Journal of Evolutionary Biology,  2020.
Public Opinion Towards Gene Drive as a Pest Control Approach for Biodiversity Conservation and the Association of Underlying Worldviews
E. A. MacDonald, J. Balanovic, E. D. Edwards, W. Abrahamse, B. Frame, A. Greenaway, R. Kannemeyer, N. Kirk, F. Medvecky, T. L. Milfont, J. C. Russell and D. M. Tompkins,  Environmental Communication-a Journal of Nature and Culture,  15:1-16. 2020.
Public Opinion Towards Gene Drive as a Pest Control Approach for Biodiversity Conservation and the Association of Underlying Worldviews
E. A. MacDonald, J. Balanovic, E. D. Edwards, W. Abrahamse, B. Frame, A. Greenaway, R. Kannemeyer, N. Kirk, F. Medvecky, T. L. Milfont, J. C. Russell and D. M. Tompkins,  Environmental Communication,  14:904-918. 2020.
Can CRISPR Save Tufty Fluffytail?
L. Tracey,  JSTOR Daily,  2020.
Mosquitoes Genetically Engineered To Resist Dengue Fever
R. Bailey,  reason,  2020.
Synthetically engineered mosquitos could neutralize dengue virus infection
L. Woolfe,  Biotechniques,  2020.
Regulation of GM Organisms for Invasive Species Control
H. J. Mitchell and D. Bartsch,  Frontiers in Bioengineering and Biotechnology,  7:1-11. 2020.
When Humankind Overrides Evolution
M. Skipper,  World Economic Forum,  Davos 2020. 2020.
Mosquitoes genetically modified to combat dengue
Downtoearth,  Down To Earth,  2020.
Genetically Modified Mosquitos Neutralize Dengue Virus
N. P. Dyal,  Infectious Disease Advisor,  2020.
Irreversible ecosystem engineering with Gene Drive Organisms
Save Our Seeds,  Save Our Seeds,  2020.
Genetically modified mosquitoes resist all dengue viruses, researchers find
B. Burton,  C|NET,  2020.
A transcomplementing gene drive provides a flexible platform for laboratory investigation and potential field deployment
V. López Del Amo, A. L. Bishop, H. M. Sánchez C, J. B. Bennett, X. Feng, J. M. Marshall, E. Bier and V. M. Gantz,  Nature Communications,  11:352. 2020.
Genetically engineered mosquitoes resist spreading any form of dengue
K. Servick,  Science,  2020.
Genetically engineered mosquitoes halt Dengue spread
L. Thomas,  New Medical Life Sciences,  2020.
Researchers Genetically Modify First Batch Of Mosquitoes Resistant To All Four Types Of Dengue
M. Dapcevich,  IFL Science,  2020.
Genetically engineered mosquitoes are immune to all strains of dengue virus for first time
G. Weule,  ABC News Online,  2020.
Mosquitoes resistant to all types of dengue virus engineered
N. Lavars,  New Atlas,  2020.
Broad dengue neutralization in mosquitoes expressing an engineered antibody
A. Buchman, S. Gamez, M. Li, I. Antoshechkin, H.-H. Li, H.-W. Wang, C.-H. Chen, M. J. Klein, J.-B. Duchemin, J. E. Crowe, Jr., P. N. Paradkar and O. S. Akbari,  PLOS Pathogens,  16:e1008103. 2020.
Development of a confinable gene drive system in the human disease vector Aedes aegypti
M. Li, T. Yang, N. P. Kandul, M. Bui, S. Gamez, R. Raban, J. Bennett, H. M. Sánchez C, G. C. Lanzaro, H. Schmidt, Y. Lee, J. M. Marshall and O. S. Akbari,  eLife,  9:e51701. 2020.
The potential cost-effectiveness of controlling dengue in Indonesia using wMel Wolbachia released at scale: a modelling study
O. J. Brady, D. D. Kharisma, N. N. Wilastonegoro, K. M. Reilly, E. Hendricx, L. S. Bastos, L. Yakob and D. S. Shepard,  medRxiv,  2020.01.11.20017186. 2020.
Gene Drive Film
Save Our Seeds,  ,  2020.
The kill-switch for CRISPR that could make gene-editing safer
E. Dolgin,  Nature,  577:308-310. 2020.
Optimal control and analysis of a modified trojan Y-Chromosome strategy
M. A. Beauregard, R. D. Parshad, S. Boon, H. Conaway, T. Griffin and J. J. Lyu,  Ecological Modelling,  416. 2020.
Antiviral effectors and gene drive strategies for mosquito population suppression or replacement to mitigate arbovirus transmission by Aedes aegypti
A. E. Williams, A. W. E. Franz, W. R. Reid and K. E. Olson,  Insects,  11:1-18. 2020.
The gene drive dilemma: We can alter entire species but should we?
J. Kahn,  New York Times Magazine,  2020.
DNA ‘edit’ that could wipe out grey invaders
Levy, A.,  Scottish Daily Mail,  2020.
Metaphor, Trust and Support for Non-native Species Control
P. A. Kohl, S. J. Collins and M. Eichholz,  Environmental Communication,  14:672-685. 2020.
Wolbachia transinfections in Culex quinquefasciatus generate cytoplasmic incompatibility
T. H. Ant, C. Herd, F. Louis, A. B. Failloux and S. P. Sinkins,  Insect Molecular Biology,  29:1-8. 2020.
Scenario analysis on the use of rodenticides and sex-biasing gene drives for the removal of invasive house mice on islands
M. E. Serr, R. X. Valdez, K. S. Barnhill-Dilling, J. Godwin, T. Kuiken and M. Booker,  Biological Invasions,  2020.
Red squirrels to thrive again in Britain as new plan considered to eradicate grey breed
Hudson, W.,  Express,  2020.
Scientists want to hack grey squirrels to death
Cutlack, C.,  Gizmodo,  2020.
Scientists behind Dolly the sheep want to edit squirrel DNA to get rid of greys and protect reds UK
Bedoya, D.,  Inforsurhoy,  2020.
First they cloned Dolly the sheep. Now they’re targeting grey squirrels
Leake, J.,  The Times,  2020.
Dolly the sheep scientists hope DNA editing can wipe out grey squirrels
McLaughlin, M.,  The Scotsman,  2020.
Beyond Mendelian genetics: Anticipatory biomedical ethics and policy implications for the use of CRISPR together with gene drive in humans.
M. W. Nestor and R. L. Wilson,  Journal of Bioethical Inquiry,  2020:1-12. 2020.
Gene drives : equity demands civility
N. Kofler,  Nature,  565:25. 2020.
A selfish genetic element linked to increased lifespan impacts metabolism in female house mice
P. C. Lopes and A. K. Lindholm,  Journal of Experimental Biology,  22:4. 2020.
Technology Factsheet: Gene Drives
J. Lunshof, C. Shachar, R. Edison, A. Jayanti,  Belfer Center for Science and International Affairs,  2020.
A comparison of the Trojan Y Chromosome strategy to harvesting models for eradication of nonnative species
J. J. Lyu, P. J. Schofield, K. M. Reaver, M. Beauregard and R. D. Parshad,  Natural Resource Modeling,  2019.
A typology of community and stakeholder engagement based on documented examples in the field of novel vector control
C. E. Schairer, R. Taitingfong, O. S. Akbari and C. S. Bloss,  PLoS Neglected Tropical Diseases,  13:e0007863. 2019.
Assessment of a Split Homing Based Gene Drive for Efficient Knockout of Multiple Genes
N. P. Kandul, J. Liu, A. Buchman, V. M. Gantz, E. Bier and O. S. Akbari,  G3: Genes|Genomes|Genetics,  10:827-837. 2019.
These are the 5 most dystopian technologies of 2020 and beyond
M. Sullivan,  FastCompany,  2019.
Biomphalaria glabrata Granulin Increases Resistance to Schistosoma mansoni Infection in Several Biomphalaria Species and Induces the Production of Reactive Oxygen Species by Haemocytes
J. R. Hambrook, A. A. Gharamah, E. A. Pila, S. Hussein and P. C. Hanington,  Genes,  11:12. 2019.
Mathematical modeling of self-contained CRISPR gene drive reversal systems
M. G. Heffel and G. C. Finnigan,  Scientific Reports,  9:20050. 2019.
CRISPR-based gene-drives: from eukaryotes to prokaryotes
Nizet, V.,  Bioengineering Community,  2019.
Experimental population modification of the malaria vector mosquito, Anopheles stephensi
T. B. Pham, C. H. Phong, J. B. Bennett, K. Hwang, N. Jasinskiene, K. Parker, D. Stillinger, J. M. Marshall, R. Carballar-Lejarazú and A. A. James,  PLOS Genetics,  15:e1008440. 2019.
Gene drives for schistosomiasis transmission control
T. Maier, N. J. Wheeler, E. K. O. Namigai, J. Tycko, R. E. Grewelle, Y. Woldeamanuel, K. Klohe, J. Perez-Saez, S. H. Sokolow, G. A. De Leo, T. P. Yoshino, M. Zamanian and J. Reinhard-Rupp,  PLoS Neglected Tropical Diseases,  13:e0007833. 2019.
Articulating ‘free, prior and informed consent’ (FPIC) for engineered gene drives
George, D. R., T. Kuiken and J. A. Delborne,  Proceedings of the Royal Society B: Biological Sciences,  286:20191484.. 2019.
Fitness consequences of a non-recombining sex-ratio drive chromosome can explain its prevalence in the wild
Dyer, K. A. and D. W. Hall,  Proceedings of the Royal Society B: Biological Sciences,  286:20192529. 2019.
Gene drive: progress and prospects
Wedell, N., T. A. R. Price and A. K. Lindholm,  Proceedings of the Royal Society B: Biological Sciences,  286:20192709. 2019.
Ancient gene drives: an evolutionary paradox
Price, T. A. R., R. Verspoor and N. Wedell,  Proceedings of the Royal Society B: Biological Sciences,  286:20192267. 2019.
Transcontinental dispersal of Anopheles gambiae occurred from West African origin via serial founder events
H. Schmidt, Y. Lee, T. C. Collier, M. J. Hanemaaijer, O. D. Kirstein, A. Ouledi, M. Muleba, D. E. Norris, M. Slatkin, A. J. Cornel and G. C. Lanzaro,  Communications Biology,  2. 2019.
Exterminator genes: The right to say no to ethics dumping
Bassey-Orovwuje, M., J. Thomas and T. Wakeford,  Development,  62:121-127. 2019.
A selfish genetic element linked to increased lifespan impacts metabolism in female house mice
Lopes, P. C. and A. K. Lindholm,  The Journal of Experimental Biology,  2019:212704. 2019.
A cross-sectional survey of biosafety professionals regarding genetically modified insects
O’Brochta, D. A., W. K. Tonui, B. Dass and S. James,  Applied Biosafety,  2019:1-9. 2019.
The potential for a released autosomal X-shredder becoming a driving-Y chromosome and invasively suppressing wild populations of malaria mosquitoes
Alcalay, Y., S. Fuchs, R. Galizi, F. Bernardini, R. E. Haghighat-Khah, D. B. Rusch, J. R. Adrion, M. W. Hahn, P. Tortosa and P. A. Papathanos,  bioRxiv,  2019:860551. 2019.
Plasmodium falciparum (Haemosporodia: Plasmodiidae) and O’nyong-nyong virus development in a transgenic Anopheles gambiae (Diptera: Culicidae) strain
Mumford, J. D., C. A. Long, S. C. Weaver, K. Miura, E. Wang, R. Rotenberry, E. M. Dotson and M. Q. Benedict,  " Journal of Medical Entomology,  56:936-941. 2019.
Genetically engineering wild mice to combat Lyme disease: An ecological perspective
Snow, A. A.,  BioScience,  69:746-756. 2019.
What risk assessments of genetically modified organisms can learn from institutional analyses of public health risks
Rajan, S. R. and D. K. Letourneau,  Journal of Biomedicine and Biotechnology,  2012:8. 2019.
Design and analysis of CRISPR-based underdominance toxin-antidote gene drives
Champer, J., S. E. Champer, I. Kim, A. G. Clark and P. W. Messer,  bioRxiv,  861435:861435. 2019.
Disrupting female flight in the vector Aedes aegypti
O'Leary, S. and Z. N. Adelman,  bioRxiv,  862300:862300. 2019.
Maintenance of fertility in the face of meiotic drive
Meade, L., S. Finnegan, R. Kad, K. Fowler and A. Pomiankowsk,  The American Naturalist,  2019:2019. 2019.
The analytical review on futuristic use of CRISPR-Cpf1 aided gene drive technology
Satyam, R., N. Singh and T. Bhardwaj,  International Journal of Trend in Scientific Research and Development,  2:525-530. 2019.
The toxin–antidote model of cytoplasmic incompatibility: Genetics and evolutionary implications
Beckmann, J. F., M. Bonneau, H. Chen, M. Hochstrasser, D. Poinsot, H. Merçot, M. Weill, M. Sicard and S. Charlat,  Trends in Genetics,  35:175-185. 2019.
An assessment of the immune costs associated with meiotic drive elements in Drosophila
Lea, J. K. and R. L. Unckless,  Proceedings of the Royal Society B: Biological Sciences,  286:20191534. 2019.
Invasive insects: Management methods explored
McLaughlin, G. M. and P. K. Dearden,  Journal of Insect Science,  19:1-9. 2019.
Winning the tug-of-war between effector gene design and pathogen evolution in vector population replacement strategies
Marshall, J. M., R. R. Raban, N. P. Kandul, J. R. Edula, T. M. León and O. S. Akbari,  Frontiers in Genetics,  10:1072. 2019.
Identification and characterisation of a Masculinizer homolog in the diamondback moth Plutella xylostella
Harvey-Samuel, T., V. C. Norman, R. Carter, E. Lovett and L. Alphey,  Insect Molecular Biology,  2019:2019. 2019.
A novel drug-inducible sex separation technique for insects
Kandul, N. P., J. Liu, A. D. Hsu, B. A. Hay and O. S. Akbari,  bioRxiv,  2019:2019.12.13.875716. 2019.
Gene drive and resilience through renewal with next generation Cleave and Rescue selfish genetic elements
Oberhofer, G., T. Ivy and B. A. Hay,  bioRxiv,  2019:2019.2012.2013.876169. 2019.
A bacterial gene-drive system efficiently edits and inactivates a high copy number antibiotic resistance locus
Valderrama, J. A., S. S. Kulkarni, V. Nizet and E. Bier,  Nature Communications,  10:5726. 2019.
Development of genetic control strategies for insect pests using CRISPR/Cas9 Développement de méthodes de lutte génétique contre de l’insecte nuisible basé sur le system CRISPR/Cas9
E. Green,  Université de Strasbourg,  2019.
Gene drives in Africa – A Podcast
Wakeford, T.,  etc Group,  2019.
New CRISPR system efficiently battles antibiotic resistance
Black, Samantha,  The Science Advisory Board,  2019.
Genetic Control of Mosquitoes
Alphey, L.,  Annual Review of Entomology,  59:205-224. 2019.
Antibiotic resistance hoops countered by gene drive feedback loops
GEN,  Genetic Engineering & Biotechnology News,  2019.
Tackling antibiotic resistance head-on with CRISPR
Thomas, L.,  News Medical Life Sciences,  2019.
The bold plan to end malaria with a gene drive
VOX,  ,  2019.
Mass-Rearing of Drosophila suzukii for Sterile Insect Technique Application: Evaluation of Two Oviposition Systems
F. Sassù, K. Nikolouli, S. Caravantes, G. Taret, R. Pereira, M. J. B. Vreysen, C. Stauffer and C. Cáceres,  Insects,  10. 2019.
Gene Drives: Assessing the benefits & risks
Creighton, J.,  Future of Life,  2019.
Out for blood: the fight against the planet’s deadliest creature
Matsangou, E.,  The New Economy,  2019.
An Initial Framework for the Environmental Risk Assessment of Synthetic Biology-Derived Organisms with a Focus on Gene Drives.
W. G. Landis, E. A. Brown and S. Eikenbary,  Synthetic Biology 2020: Frontiers in Risk Analysis and Governance. Risk, Systems and Decisions.,  2019.
An X-linked meiotic drive allele has strong, recessive fitness costs in female Drosophila pseudoobscura
W. Larner, T. Price, L. Holman and N. Wedell,  Proceedings of the Royal Society B-Biological Sciences,  286:9. 2019.
Malaysia Wolbachia trials: Battling dengue and other mosquito-borne viruses
,  2019.
Establishment of Wolbachia Strain wAlbB in Malaysian Populations of Aedes aegypti for Dengue Control
W. A. Nazni, A. A. Hoffmann, A. NoorAfizah, Y. L. Cheong, M. V. Mancini, N. Golding, G. M. R. Kamarul, M. A. K. Arif, H. Thohir, H. NurSyamimi, M. Z. ZatilAqmar, M. NurRuqqayah, A. NorSyazwani, A. Faiz, F.-R. M. N. Irfan, S. Rubaaini, N. Nuradila, N. M. N,  Current Biology,  29:4241-4248.e5. 2019.
This gene technology could change the world. Its maker isn’t sure it should
Love, S.,  Vice,  2019.
Wiping out the daughters: Burkina Faso’s controversial mosquito experiment
Boersma, H. and J. Bastmeijer,  The Guardian,  2019.
The Competitive Mating of Irradiated Brown Marmorated Stink Bugs, Halyomorpha halys, for the Sterile Insect Technique
D. M. Suckling, M. Cristofaro, G. Roselli, M. C. Levy, A. Cemmi, V. Mazzoni, L. D. Stringer, V. Zeni, C. Ioriatti and G. Anfora,  Insects,  10. 2019.
Effects of a male meiotic driver on male and female transcriptomes in the house mouse
A. Lindholm, A. Sutter, S. Kunzel, D. Tautz and H. Rehrauer,  Proceedings of the Royal Society B-Biological Sciences,  286:1-8. 2019.
Rodent gene drives for conservation: opportunities and data needs
J. Godwin, M. Serr, K. Barnhill-Dilling, D. V. Blondel, P. R. Brown, K. Campbell, J. Delborne, A. L. Lloyd, K. P. Oh, T. A. A. Prowse, R. Saah and P. Thomas,  Proceedings of the Royal Society B-Biological Sciences,  286:20191606. 2019.
The impact of local population genetic background on the spread of the selfish element Medea-1 in red flour beetles
S. A. Cash, M. A. Robert, M. D. Lorenzen and F. Gould,  Ecology and Evolution,  12:1-12. 2019.
The distribution and spread of naturally occurring Medea selfish genetic elements in the United States
S. A. Cash, M. D. Lorenzen and F. Gould,  Ecology and Evolution,  9:14407–14416.. 2019.
Gene Drive and Thinking Animals
Island Conservation,  ,  2019.
Meiotic drive mechanisms: lessons from Drosophila
C. Courret, C.-H. Chang, K. H.-C. Wei, C. Montchamp-Moreau and A. M. Larracuente,  Proceedings of the Royal Society B: Biological Sciences,  286:20191430. 2019.
Gene Drives and new genetic manipulation in agriculture
Terra de Direitos,  Terra de Direitos,  2019.
A Controversial Swarm Of Genetically Modified Mosquitoes In A Lab In Italy
NPR,  ,  2019.
Does meiotic drive alter male mate preference?
S. R. Finnegan, L. Nitsche, M. Mondani, M. F. Camus, K. Fowler and A. Pomiankowski,  Behavioral Ecology,  13:194-201. 2019.
Genetic control of Invasive carp
MAISRC,  Minnesota Aquatic Invasive Species Research Center,  2019.
Fitness consequences of the selfish supergene Segregation Distorter
H. W. S. Wong and L. Holman,  Journal of Evolutionary Biology,  33:89-100. 2019.
Evolutionary simulations of Z-linked suppression gene drives
L. Holman,  Proceedings of the Royal Society B-Biological Sciences,  286:1-9. 2019.
Peri-Urban Community Attitudes towards Codling Moth Trapping and Suppression Using the Sterile Insect Technique in New Zealand
G. Paterson, G. L. W. Perry, J. T. S. Walker and D. M. Suckling,  Insects,  10. 2019.
‘We don’t want to be guinea pigs’: how one African community is fighting genetically modified mosquitoes
A. Pujol-Mazzini,  The Telegraph,  2019.
Threshold-Dependent Gene Drives in Wild Populations – A Podcast
G. A. Backus and J. A. Delborne,  BioScience Talks,  2019.
Efforts to enhance safety measures for CRISPR/Cas-based gene drive technology in Japan
T. Tanaka, N. Tanaka, Y. Nagano, H. Kanuka, D. S. Yamamoto, N. Yamamoto, E. Nanba and T. Nishiuch,  Journal of Environment and Safety,  2019.
Gene Drives: Dynamics and Regulatory Matters-A Report from the Workshop “Evaluation of Spatial and Temporal Control of Gene Drives,” April 4-5, 2019, Vienna
B. Giese, J. L. Friess, N. H. Barton, P. W. Messer, F. Debarre, M. F. Schetelig, N. Windbichler, H. Meimberg and C. Boete,  Bioessays,  41:3. 2019.
Gene drives in Wisconsin agriculture: What are they, and should you support it?
Jones, M. and Mitchell, P. D.,  Renk Agribusiness Institute,  2019.
Two unresolved issues in community engagement for field trials of genetically modified mosquitoes
D. B. Resnik,  Pathogens and Global Health,  113:238-245. 2019.
Gene Drive Mosquitoes: Ethics, Environment and Efficacy
L. Wilburn,  ScienceInnovationUnion,  2019.
Threshold-Dependent Gene Drives in the Wild: Spread, Controllability, and Ecological Uncertainty
G. A. Backus and J. A. Delborne,  BioScience,  69:900-907. 2019.
Scientists release sterile mosquitoes in Burkina to fight malaria
T. Ndiaga,  Reuters,  2019.
Gene Drive Technologies: Powerful and destructive
SWISSAID,  ,  2019.
Mosquito Control
Dye-Braumuller K, Fredregill C, Debboun M.,  Mosquitoes, Communities, and Public Health in Texas,  8:249-278. 2019.
Malaria eradication within a generation: ambitious, achievable, and necessary
R. G. A. Feachem, I. Chen, O. Akbari, A. Bertozzi-Villa, S. Bhatt, F. Binka, M. F. Boni, C. Buckee, J. Dieleman, A. Dondorp, A. Eapen, N. Sekhri Feachem, S. Filler, P. Gething, R. Gosling, A. Haakenstad, K. Harvard, A. Hatefi, D. Jamison, K. E. Jones, C.,  Lancet,  394:1056-1112. 2019.
Genetically engineered mosquitoes out of control
GM Watch,  GM Watch,  2019.
Standard deviations: The biological bases of transmission ratio distortion
L. Fishman and M. McIntosh,  Annual Review of Genetics,  53:347-372. 2019.
Transgenic Aedes aegypti Mosquitoes Transfer Genes into a Natural Population
B. R. Evans, P. Kotsakiozi, A. L. Costa-da-Silva, R. S. Ioshino, L. Garziera, M. C. Pedrosa, A. Malavasi, J. F. Virginio, M. L. Capurro and J. R. Powell,  Scientific Reports,  9:6. 2019.
Twenty-five Years of Research Experience with the Sterile Insect Technique and Area-Wide Management of Codling Moth, Cydia pomonella (L.), in Canada
H. M. A. Thistlewood and G. J. R. Judd,  Insects,  10:292. 2019.
Dit Afrikaanse dorp krijgt, als eerste plek ter wereld, gentechmuggen tegen malaria
Boersma, Hidde,  de Volkskrant,  2019.
A 2017 horizon scan of emerging issues for global conservation and biological diversity
Sutherland, WJB, P.; Broad, S.; Clout, M.; Connor, B.; Cote, I. M.; Dicks, L. V.; Doran, H.; Entwistle, A. C.; Fleishman, E.; Fox, M.; Gaston, K. J.; Gibbons, D. W.; Jiang, Z.; Keim, B.; Lickorish, F. A.; Markillie, P.; Monk, K. A.; Pearce-Higgins, J. W.; Peck, L. S.; Pretty, J.; Spalding, M. D.; Tonneijck, F. H.; Wintle, B. C.; Ockendon, N.,  Trends in Ecology & Evolution,  32:31-40. 2019.
Herbicide resistant weeds: A call to integrate conventional agricultural practices, molecular biology knowledge and new technologies
V. E. Perotti, A. S. Larran, V. E. Palmieri, A. K. Martinatto and H. R. Permingeat,  Plant Science,  290:110255. 2019.
Herbicide resistant weeds: A call to integrate conventional agricultural practices, molecular biology knowledge and new technologies
V. E. Perotti, A. S. Larran, V. E. Palmieri, A. K. Martinatto and H. R. Perrningeat,  Plant Science,  290:15. 2019.
Gene Drives: Experience with gene drive systems that may inform an environmental risk assessment
Rüdelsheim, PKJS, G.,  COGEM,  2019.
A natural gene drive system influences bovine tuberculosis susceptibility in African buffalo: Possible implications for disease management
P. van Hooft, W. M. Getz, B. J. Greyling and A. D. S. Bastos,  PLoS One,  14:e0221168. 2019.
Engineered action at a distance: Blood-meal-inducible paralysis in Aedes aegypti
R. E. Haghighat-Khah, T. Harvey-Samuel, S. Basu, O. StJohn, S. Scaife, S. Verkuijl, E. Lovett and L. Alphey,  PLOS Neglected Tropical Diseases,  13:e0007579. 2019.
Guidance for IBCs: Regulatory requirements for contained research with GMOs containing engineered gene drives
Office of the Gene Technology Regulator,  Australian Government, Department of Health,  2019.
What is genome editing?
NHGRI,  NHGRI,  2019.
How gene drives could transform pest control
TEDx Youth,  ,  2019.
Autonomy of Nations and Indigenous Peoples and the Environmental Release of Genetically Engineered Animals with Gene Drives
Z. Meghani,  Global Policy,  10:554-568. 2019.
Synthetic Biology: Research Needs for Assessing Environmental Impacts
C. M. Warner, S. R. Carter, R. F. Lance, F. H. Crocker, H. N. Meeks, B. L. Adams, M. L. Magnuson, T. Rycroft, K. Pokrzywinski and E. J. Perkins,  Synthetic Biology 2020: Frontiers in Risk Analysis and Governance,  2019.
Transforming insect population control with precision guided sterile males with demonstration in flies
Kandul, N. P., J. Liu, H. M. Sanchez C, S. L. Wu, J. M. Marshall and O. S. Akbari,  Nature Communications,  10:84. 2019.
Viral gene drive in herpesviruses
Walter, M. and E. Verdin,  bioRxiv,  2019:717017. 2019.
Combinations of Spok genes create multiple meiotic drivers in Podospora
A. A. Vogan, S. L. Ament-Velásquez, A. Granger-Farbos, J. Svedberg, E. Bastiaans, A. J. M. Debets, V. Coustou, H. Yvanne, C. Clavé, S. J. Saupe and H. Johannesson,  eLife,  8:e46454. 2019.
A family of killers
M. De Carvalho and S. E. Zanders,  eLife,  8:e49211. 2019.
Gene Drives in Africa: Civil Society Speaks Out
African Centre for Biodiversity,  African Centre for Biodiversity,  2019.
Assessment of a split homing based gene drive for efficient knockout of multiple genes
Kandul, N. P., J. Liu, A. Buchman, V. M. Gantz, E. Bier and O. S. Akbari,  bioRxiv,  2019:706929. 2019.
Incompatible and sterile insect techniques combined eliminate mosquitoes
X. Zheng, D. Zhang, Y. Li, C. Yang, Y. Wu, X. Liang, Y. Liang, X. Pan, L. Hu, Q. Sun, X. Wang, Y. Wei, J. Zhu, W. Qian, Z. Yan, A. G. Parker, J. R. L. Gilles, K. Bourtzis, J. Bouyer, M. Tang, B. Zheng, J. Yu, J. Liu, J. Zhuang, Z. Hu, M. Zhang, J.-T. Gon,  572,  56-61. 2019.
The potential of genomics for restoring ecosystems and biodiversity
M. F. Breed, P. A. Harrison, C. Blyth, M. Byrne, V. Gaget, N. J. C. Gellie, S. V. C. Groom, R. Hodgson, J. G. Mills, T. A. A. Prowse, D. A. Steane and J. J. Mohr,  Nature Reviews Genetics,  20:615-628. 2019.
Sex-ratio meiotic drive shapes the evolution of the Y chromosome in Drosophila simulans
Q. Helleu, C. Courret, D. Ogereau, K. L. Burnham, N. Chaminade, M. Chakir, S. Aulard and C. Montchamp-Moreau,  Molecular Biology and Evolution,  36:2668-2681. 2019.
Self-destructing mosquitoes and sterilized rodents: the promise of gene drives
M. Scudellari,  Nature,  571:160-162. 2019.
Interpopulation spread of a parasitic B chromosome is unlikely through males in the grasshopper Eyprepocnemis plorans
M. I. Manrique-Poyato, J. Cabrero, M. D. López-León, F. Perfectti, R. Gómez and J. P. M. Camacho,  Heredity,  124:197-206. 2019.
Synthetic Biology and the United Nations
H.-E. Lai, C. Canavan, L. Cameron, S. Moore, M. Danchenko, T. Kuiken, Z. Sekeyová and P. S. Freemont,  Trends in Biotechnology,  37:1146-1151. 2019.
Split-gene drive system provides flexible application for safe laboratory investigation and potential field deployment
V. L. Del Amo, A. L. Bishop, H. M. Sánchez C, J. B. Bennett, X. Feng, J. M. Marshall, E. Bier and V. M. Gantz,  bioRxiv,  684597. 2019.
Sex Sorting for Pest Control: It’s Raining Men!
C. Lutrat, D. Giesbrecht, E. Marois, S. Whyard, T. Baldet and J. Bouyer,  Trends in Parasitology,  35:649-662. 2019.
Biological control of pests and a social model of animal welfare
A. Mankad, U. Kennedy and L. Carter,  Journal of Environmental Management,  247:313-322. 2019.
The association between mitochondrial genetic variation and reduced colony fitness in an invasive wasp
J. Dobelmann, A. Alexander, J. W. Baty, N. J. Gemmell, M. A. M. Gruber, O. Quinn, T. Wenseleers and P. J. Lester,  Molecular Ecology,  28:3324-3338. 2019.
A century of bias in genetics and evolution
L. D. Hurst,  Heredity,  123:33-44. 2019.
B chromosome first—mechanisms behind the drive of B chromosomes uncovered
Leibniz Institute of Plant Genetics and Crop Plant Research,  Phy Org,  2019.
A synthetic male-specific sterilization system using the mammalian pro-apoptotic factor in a malaria vector mosquito
D. S. Yamamoto, M. Sumitani, K. Kasashima, H. Sezutsu, H. Matsuoka and H. Kato,  Scientific Reports,  9:11. 2019.
Exploring Stakeholder Perspectives on the Development of a Gene Drive Mouse for Biodiversity Protection on Islands: Workshop Report
M. Farooque, S. K. Barnhill-Dilling, J. Shapiro and J. Delborne,  North Carolina State University,  2019.
Gene Drive Symposium-Critical Science Switzerland
Critical Scientists Switzerland; European Network of Scientists for Social and Environmental Responsibility; Vereinigung Deutscher Wissenschaftler,  ,  2019.
Gene Drives: A report on their science, applications, social aspects, ethics and regulations
H. Dressel,  Critical Scientists Switzerland; European Network of Scientists for Social and Environmental Responsibility; Vereinigung Deutscher Wissenschaftler,  2019.
Gene drives and the international biodiversity regime
F. Rabitz,  Review of European, Comparative & International Environmental Law,  2019.
Gene drive organisms: What Africa should know about actors, motives and threats to biodiversity and food systems
Sirinathsinghji, E.,  African Centre for Biodiversity.,  2019.
Gene-drive-mediated extinction is thwarted by population structur