Keywords: gene drive ethics

The gene drive dilemma: We can alter entire species but should we?

J. Kahn,  New York Times Magazine,  2020.
One early summer evening in 2018, the biologist Anthony James drove from his office at the University of California, Irvine, to the headquarters of the Creative Artists Agency, a sleek glass-and-steel high-rise in Los Angeles. There, roughly 200 writers, directors and producers ...
Keywords: , , , , , , , ,

Scenario analysis on the use of rodenticides and sex-biasing gene drives for the removal of invasive house mice on islands

M. E. Serr, R. X. Valdez, K. S. Barnhill-Dilling, J. Godwin, T. Kuiken and M. Booker,  Biological Invasions,  2020.
Since the 1960s conservation efforts have focused on recovering island biodiversity by eradicating invasive rodents. These eradication campaigns have led to considerable conservation gains, particularly for nesting seabirds. However, eradications are complex and lengthy endeavors ...
Keywords: , , , , , , , ,

Beyond Mendelian genetics: Anticipatory biomedical ethics and policy implications for the use of CRISPR together with gene drive in humans.

M. W. Nestor and R. L. Wilson,  Journal of Bioethical Inquiry,  2020:1-12. 2020.
Clustered regularly interspaced short palindromic repeats (CRISPR) genome editing has already reinvented the direction of genetic and stem cell research. For more complex diseases it allows scientists to simultaneously create multiple genetic changes to a single cell. ...
Keywords: , , , , , , , ,

A typology of community and stakeholder engagement based on documented examples in the field of novel vector control

C. E. Schairer, R. Taitingfong, O. S. Akbari and C. S. Bloss,  PLoS Neglected Tropical Diseases,  13:e0007863. 2019.
Background Despite broad consensus on the importance of community and stakeholder engagement (CSE) for guiding the development, regulation, field testing, and deployment of emerging vector control technologies (such as genetically engineered insects), the types of activities ...
Keywords: , , , , , , , ,

Articulating ‘free, prior and informed consent’ (FPIC) for engineered gene drives

George, D. R., T. Kuiken and J. A. Delborne,  Proceedings of the Royal Society B: Biological Sciences,  286:20191484.. 2019.
Recent statements by United Nations bodies point to free, prior and informed consent (FPIC) as a potential requirement in the development of engineered gene drive applications. As a concept developed in the context of protecting Indigenous rights to self-determination in land ...
Keywords: , , , , , , , ,

Exterminator genes: The right to say no to ethics dumping

Bassey-Orovwuje, M., J. Thomas and T. Wakeford,  Development,  62:121-127. 2019.
The scientific-industrial complex is promoting a new wave of genetically modified organisms, in particular gene drive organisms, using the same hype with which they tried to persuade society that GMOs would be a magic bullet to solve world hunger. The Gates Foundation claims that ...
Keywords: , , , , , , , ,

Gene drives in Africa – A Podcast

Wakeford, T.,  etc Group,  2019.
In Episode #1 ETC's Tom Wakeford speaks with Ugandan lawyer and advocate Barbara Ntambirweki about gene drives, a powerful new genetic technology that can change species in the wild and make species go extinct.
Keywords: , , , , , , , ,

Gene Drives and new genetic manipulation in agriculture

Terra de Direitos,  Terra de Direitos,  2019.
Gene drives are forms of genetic editing or manipulation of live organisms. They are the most dangerous forms of transgenics which edit genetic characteristics without necessarily including a new gene, but rather manipulating existing genes of live organisms, i.e. live organism ...
Keywords: , , , , , , , ,

Efforts to enhance safety measures for CRISPR/Cas-based gene drive technology in Japan

T. Tanaka, N. Tanaka, Y. Nagano, H. Kanuka, D. S. Yamamoto, N. Yamamoto, E. Nanba and T. Nishiuch,  Journal of Environment and Safety,  2019.
Gene drive is a powerful system that can spread a desirable genetic trait into an entire species and/or population of a certain region, bypassing Mendelian rules of inheritance. Recently, one of the genome editing technologies, CRISPR/Cas, has been developed, making it easier to ...
Keywords: , , , , , , , ,

Gene drive organisms: What Africa should know about actors, motives and threats to biodiversity and food systems

Sirinathsinghji, E.,  African Centre for Biodiversity.,  2019.
In this briefing paper, we set out the key issues that our governments should have addressed with African civil society before endorsing positions and setting the benchmark for Africa-wide policy. In this regard, we point out that, while the impetus for the AU position might well ...
Keywords: , , , , , , , ,

Does the U.S. public support using gene drives in agriculture? And what do they want to know?

Jones, MSD, Jason A.; Elsensohn, Johanna; Mitchell, Paul D.; Brown, Zachary S.,  Science Advances,  5:eaau8462. 2019.
Gene drive development is progressing more rapidly than our understanding of public values toward these technologies. We analyze a statistically representative survey (n = 1018) of U.S. adult attitudes toward agricultural gene drives. When informed about potential risks, ...
Keywords: , , , , , , , ,

Gene drives as a response to infection and resistance

Hayirli, TCM, P.F.,  Infection and Drug Resistance,  12:229-234. 2019.
Vector-borne infectious diseases continue to be a major threat to public health. Although some prevention and treatment modalities exist for these diseases, resistance to such modalities, exacerbated by global climate change, remains a fundamental challenge. Developments in ...
Keywords: , , , , , , , ,

Gene drive gone wild: exploring deliberative possibilities by developing One Health ethics

Capps, B,  Law, Innovation and Technology,  11:231-256. 2019.
Gene editing may be used to engineer organisms that are better or worse adapted to survival. Coupled with gene drives ? molecular genetic strategies that perpetuate specific phenotypes in a target species ? it would now be possible to edit wild animal populations that impact on ...
Keywords: , , , , , , , ,

Knowledge engagement in gene drive research for malaria control

Hartley, ST, D.; Ledingham, K.; Coulibaly, M.; Diabate, A.; Dicko, B.; Diop, S.; Kayondo, J.; Namukwaya, A.; Nourou, B.; Toe, L. P.,  PLOS Neglected Tropical Diseases,  13:e0007233. 2019.
Scientists and funding bodies have made repeated calls for public engagement in gene drive. In 2016, the National Academies of Sciences, Engineering, and Medicine (NASEM) published its report, Gene Drives on the Horizon: Advancing Science, Navigating Uncertainty, and Aligning ...
Keywords: , , , , , , , ,

The ethical landscape of gene drive research

Callies, DE,  Bioethics,  33:1091-1097. 2019.
Gene drive technology has immense potential. The ability to bypass the laws of Mendelian inheritance and almost ensure the transmission of specific genetic material to future generations creates boundless possibilities. But alongside these boundless possibilities are major social ...
Keywords: , , , , , , , ,

CRISPR-Cas9. The greatest advancement in genetic edition techniques requires an ethical reflection

Gomez-Tatay, LA, J.,  Cuadernos De Bioetica,  30:171-185. 2019.
The adaptation of the CRISPR system as a genetic editing tool has led to a revolution in many fields of application, as this technique is considerably faster, easier to perform and more efficient than predecessor techniques. However, some of these applications raise objective ...
Keywords: , , , , , , , ,

CRISPR ethics: Moral considerations for applications of a powerful tool

Brokowski, C. and Adli, M.,  Journal of Molecular Biology,  431:88-101. 2019.
With the emergence of CRISPR technology, targeted editing of a wide variety of genomes is no longer an abstract hypothetical, but occurs regularly. As application areas of CRISPR are exceeding beyond research and biomedical therapies, new and existing ethical concerns abound ...
Keywords: , , , , , , , ,

Gene drives in plants: opportunities and challenges for weed control and engineered resilience

Barrett, LGL, Mathieu; Kumaran, Nagalingam; Glassop, Donna; Raghu, S.; Gardiner, Donald M.,  Proceedings of the Royal Society B: Biological Sciences,  286:9. 2019.
Plant species, populations and communities are under threat from climate change, invasive pathogens, weeds and habitat fragmentation. Despite considerable research effort invested in genome engineering for crop improvement, the development of genetic tools for the management of ...
Keywords: , , , , , , , ,

Gene driving the farm: who decides, who owns, and who benefits?

Montenegro de Wit, M,  Agroecology and Sustainable Food Systems,  43:1054-1074. 2019.
This commentary essay explores the social and ecological implications of gene-driving agriculture.
Keywords: , , , , , , , ,

Sustainability as a framework for considering gene drive mice for invasive rodent eradication

Barnhill-Dilling, SKS, M.; Blondel, D. V.; Godwin, J.,  Sustainability,  11:1334. 2019.
Gene drives represent a dynamic and controversial set of technologies with applications that range from mosquito control to the conservation of biological diversity on islands. Currently, gene drives are being developed in mice that may one day serve as an important tool for ...
Keywords: , , , , , , , ,

The ethics of genome editing in non-human animals: a systematic review of reasons reported in the academic literature

de Graeff, NJ, K. R.; Johnston, J.; Hartley, S.; Bredenoord, A. L.,  Philosophical Transactions of the Royal Society B-Biological Sciences,  374:1-25. 2019.
In recent years, new genome editing technologies have emerged that can edit the genome of non-human animals with progressively increasing efficiency. Despite ongoing academic debate about the ethical implications of these technologies, no comprehensive overview of this debate ...
Keywords: , , , , , , , ,

Informed consent and community engagement in open field research: lessons for gene drive science

Singh, JA,  BMC Medical Ethics,  20:54. 2019.
The development of the CRISPR/Cas9 gene editing system has generated new possibilities for the use of gene drive constructs to reduce or suppress mosquito populations to levels that do not support disease transmission. Despite this prospect, social resistance to genetically ...
Keywords: , , , , , , , ,

Two minutes to midnight-what international law can do about genome editing

Lee, TL,  Asian Journal of Wto & International Health Law and Policy,  14:227-265. 2019.
With its ability to transform the ecosystem, gene drives, a powerful genome-editing technology, poses nuanced regulatory challenges. In particular, as gene drives can override the normal rule of inheritance, where the impacts of gene-drive modified organisms on the environment ...
Keywords: , , , , , , , ,

An introduction to the proceedings of the environmental release of engineered pests: Building an international governance framewor

Brown, Z. S., L. Carter and F. Gould,  BMC Proceedings,  12:10. 2018.
In October 2016, a two-day meeting of 65 academic, government and industry professionals was held at North Carolina State University for early-stage discussions about the international governance of gene drives: potentially powerful new technologies that can be used for the ...
Keywords: , , , , , , , ,

Means and ends of effective global risk assessments for genetic pest management

Turner, G., C. Beech and L. Roda,  BMC Proceedings,  12:13. 2018.
The development and use of genetic technologies is regulated by countries according to their national laws and governance structures. Legal frameworks require comprehensive technical evidence to be submitted by an applicant on the biology of the organism, its safety to human, ...
Keywords: , , , , , , , ,

Towards inclusive social appraisal: risk, participation and democracy in governance of synthetic biology

Stirling, A., K. R. Hayes and J. Delborne,  BMC Proceedings,  12:15. 2018.
Frameworks that govern the development and application of novel products, such as the products of synthetic biology, should involve all those who are interested or potentially affected by the products. The governance arrangements for novel products should also provide a ...
Keywords: , , , , , , , ,

Public engagement pathways for emerging GM insect technologies

Burgess, M. M., J. D. Mumford and J. V. Lavery,  BMC Proceedings,  12:12. 2018.
Policy and management related to the release of organisms generated by emerging biotechnologies for pest management should be informed through public engagement. Regulatory decisions can be conceptually distinguished into the development of frameworks, the assessment of the ...
Keywords: , , , , , , , ,

GM insect pests under the Brazilian regulatory framework: development and perspectives

Andrade, P. P., M. A. da Silva Ferreira, M. S. Muniz and A. de Casto Lira-Neto,  BMC Proceedings,  12:15. 2018.
The emergence of new technologies for genetic modification has broadened the range of possible new products. The regulations of many countries that could benefit from these new products may not be prepared to assess risks and enable science-based decision-making. This is ...
Keywords: , , , , , , , ,

Regulation of emerging gene technologies in India

Ahuja, V.,  BMC Proceedings,  12:14. 2018.
In India, genetically modified organisms (GMOs) and the products thereof are regulated under the “Rules for the manufacture, use, import, export & storage of hazardous microorganisms, genetically engineered organisms or cells, 1989” (referred to as Rules, 1989) notified under ...
Keywords: , , , , , , , ,

Ethics of sculpting evolution

K. Esvelt,  PopTech,  2018.
How might supervillains take over the world, and what can we do about it? Kevin Esvelt, the first to identify the potential for CRISPR “gene drive” systems to alter entire populations of organisms, is calling for a new scientific method that is both open and gives ...
Keywords: , , , , , , , ,

Letter: Gene Drive and Trust in Science

Boëte, C,  GeneWatch,  2018.
In a recent paper, Emerson et al. present five principles for gene drive research that they argue should be adopted by its sponsors and supporters: 1) advancing quality science to promote the public good; 2) the promotion of stewardship, safety, and good governance principles; 3) ...
Keywords: , , , , , , , ,

Gene Drive Technology

Rick Weiss,  SciLine,  2018.
Gene drives represent a new take on genetic engineering offering previously impossible means of fighting disease-spreading insects and invasive species but also raising the specter of ecological disruption. This briefing reviews the current status of gene-drive technology, ...
Keywords: , , , , , , , ,

Can We Engineer Social Ecosystems?

TEDxCambridgeSalon,  ,  2018.
Kevin Esvelt is director of the Sculpting Evolution group, which invents new ways to study and influence the evolution of ecosystems. By carefully developing and testing these methods with openness and humility, the group seeks to address difficult ecological problems for the ...
Keywords: , , , , , , , ,

Development of community of practice to support quantitative risk assessment for synthetic biology products: contaminant bioremediation and invasive carp control as cases

Trump, BF, C.; Rycroft, T.; Wood, M. D.; Bandolin, N.; Cains, M.; Cary, T.; Crocker, F.; Friedenberg, N. A.; Gurian, P.; Hamilton, K.; Hoover, J.J.; Meyer, C.; Pokrzywinski, K.; Ritterson, R.; Schulte, P.; Warner, C. ; Perkins, E.; Linkov, I.,  Environmental Systems and Decisions,  38:517-527. 2018.
Synthetic biology has the potential for a broad array of applications. However, realization of this potential is challenged by the paucity of relevant data for conventional risk assessment protocols, a limitation due to to the relative nascence of the field, as well as the poorly ...
Keywords: , , , , , , , ,

The roles of ethics in gene drive research and governance

Thompson, PB,  Journal of Responsible Innovation,  5:S159-S179. 2018.
Ethics research queries the norms and values that shape the goals and justification for gene drive projects, and that might lead to issue or opposition to such projects. A framework for organizing ethics research is offered. In addition to basic research ethics and risk ...
Keywords: , , , , , , , ,

Harnessing gene drive

Min, JS, Andrea L.; Najjar, Devora; Esvelt, Kevin M.,  Journal of Responsible Innovation,  5:S40-S65. 2018.
When scientists alter the genome of an organism, we typically reduce its ability to reproduce in the wild. This limitation has prevented researchers from rendering wild insects unable to spread disease, programing pests to ignore our crops, using genetics to precisely remove ...
Keywords: , , , , , , , ,

Strengthening regulatory capacity for gene drives in Africa: leveraging NEPAD’s experience in establishing regulatory systems for medicines and GM crops in Africa

Glover, BA, Olalekan; Savadogo, Moussa; Timpo, Samuel; Lemgo, Godwin; Sinebo, Woldeyesus; Akile, Sunday; Obukosia, Silas; Ouedraogo, Jeremy; Ndomondo-Sigonda, Margareth; Koch, Muffy; Makinde, Diran; Ambali, Aggrey,  BMC Proceedings,  12:1-10. 2018.
The New Partnership for Africa’s Development (NEPAD) Agency recognizes that Africa is in a period of transition and that this demands exploring and harnessing safe advances made in science-based innovations including modern biotechnology. To advance the science of biotechnology ...
Keywords: , , , , , , , ,

Genetically engineered mosquitoes, Zika and other arboviruses, community engagement, costs, and patents: Ethical issues

Meghani, ZB, Christophe,  PLOS Neglected Tropical Diseases,  12:e0006501. 2018.
We discuss here key ethical questions raised by the use of GE insects, with the aim of fostering discussion between the public, researchers, policy makers, healthcare organizations, and regulatory agencies at the local, national, and international levels. We affect that goal by ...
Keywords: , , , , , , , ,

Community engagement and field trials of genetically modified insects and animals

Neuhaus, C. P.,  Hastings Center Report,  48:25-36. 2018.
New techniques for the genetic modification of organisms are creating new strategies for addressing persistent public health challenges. For example, the company Oxitec has conducted field trials internationally?and has attempted to conduct field trials in the United States?of a ...
Keywords: , , , , , , , ,

Making policies about emerging technologies

Kaebnick, G. E. and M. K. Gusmano,  Hastings Center Report,  48:S2-S11. 2018.
Can we make wise policy decisions about still-emerging technologies?decisions that are grounded in facts yet anticipate unknowns and promote the public's preferences and values? There is a widespread feeling that we should try. There also seems to be widespread agreement that the ...
Keywords: , , , , , , , ,

Gene Drives: A scientific case for a complete and perpetual ban

Latham, J,  GeneWatch,  2017.
One of the central issues of our day is how to safely manage the outputs of industrial innovation. Novel products incorporating nanotechnology, biotechnology, rare metals, microwaves, novel chemicals, and more, enter the market on a daily basis. Yet none of these products come ...
Keywords: , , , , , , , ,

Sterile Insect Techniques, GE mosquitoes and gene drives

Hanson, J,  GeneWatch,  2017.
One of the great temptations in any field is to promote your solution to a problem as the only solution. The recent application of gene drives to sterilize mosquitoes that transmit malaria or viruses like dengue and zika is an example of this tendency to first develop a ...
Keywords: , , , , , , , ,

Ethical implications of fighting malaria with CRISPR/Cas9

Patrão Neves, MD, Christiane,  BMJ Global Health,  2:e000396. 2017.
Genome editing is a new, cheap and versatile technique which has great promise to combat vector-borne diseases. The current ethical debate worldwide is mainly concentrating on the dangers of germline intervention and less so on the potential for fighting vector-borne diseases. ; ...
Keywords: , , , , , , , ,

Unintended consequences of 21st century technology for agricultural pest management

Young, SL,  EMBO reports,  18:1478-1478. 2017.
Comment on Agricultural pest control with CRISPR-based gene drive: time for public debate by Courtier-Orgogozo et al.
Keywords: , , , , , , , ,

Teilhard de Chardin’s oeuvre within an ongoing discussion of a gene drive release for public health reasons

Cartolovni, A,  Life Sciences, Society and Policy,  13:18. 2017.
Within the domain of public health, vector-borne diseases are among the most vehemently discussed issues. Recent scientific breakthroughs in genome editing technology provided a solution to this issue in the form of a gene drive that might decrease and even eradicate vector-borne ...
Keywords: , , , , , , , ,

Eradicating Mosquitoes? The promise and peril of gene drive technologies.

Jun, B-O,  Eubios Journal of Asian and International Bioethics,  27:113-116. 2017.
This paper discusses the ethical issues associated with genetic modification of mosquito species that are human disease vectors. The Oxitec genetically changed mosquito—a variant of a species called Aedes aegypti, OX513A, is taken as an example. The benefits and risks are ...
Keywords: , , , , , , , ,

Gene drive and collective oversight

Esvelt, K,  GeneWatch,  2017.
As one of the scientists who first described how CRISPR could create gene drive systems capable of altering wild; populations, I am morally responsible for the consequences. I'm writing to you in the hope that the people most; critical of the very idea can help. Bluntly, gene ...
Keywords: , , , , , , , ,

Gene Drives on the Horizon: Advancing Science, Navigating Uncertainty, and Aligning Research with Public Values

U. S. National Academies of Sciences, Engineering, and Medicine,  The National Academies Press,  2016.
Scientists have studied gene drives for more than 50 years. The development of a powerful genome editing tool in 2012, CRISPR/Cas9,1 led to recent breakthroughs in gene drive research that built on that half century’s worth of knowledge, and stimulated new discussion of the ...
Keywords: , , , , , , , ,

Gene Drive Technology: Where is the Future?

National Academy of Sciences Engineering Medicine,  BioScience Talks,  2016.
Gene drives have the potential to revolutionize approaches to major public health, conservation, and agricultural problems. For instance, gene drives might one day prevent mosquitoes from spreading a variety of deadly diseases, including Zika virus, malaria, and others. A form of ...
Keywords: , , , , , , , ,

Engineering the wild: Gene drives and intergenerational equity

J. Kuzma and L. Rawls,  Jurimetrics,  56:279-296. 2016.
New genetic engineering methods are allowing scientists to insert genes into organisms that have the potential to spread themselves throughout natural populations upon the release of individuals carrying those genes. Gene drive technology is being researched and developed for ...
Keywords: , , , , , , , ,

Genome editing: intellectual property and product development in plant biotechnology

Schinkel, HS, S.,  Plant Cell Reports,  35:1487-1491. 2016.
Genome editing is a revolutionary technology in molecular biology. While scientists are fascinated with the unlimited possibilities provided by directed and controlled changes in DNA in eukaryotes and have eagerly adopted such tools for their own experiments, an understanding of ...
Keywords: , , , , , , , ,

Driven to extinction? The ethics of eradicating mosquitoes with gene-drive technologies

Pugh, J,  Journal of Medical Ethics,  42:578-581. 2016.
Mosquito-borne diseases represent a significant global disease burden, and recent outbreaks of such diseases have led to calls to reduce mosquito populations. Furthermore, advances in gene-drive' technology have raised the prospect of eradicating certain species of mosquito via ...
Keywords: , , , , , , , ,

National Academies of Science, Engineering and Medicine’s Gene Drive Workshop: Science, Ethics, and Governance Considerations for Gene Drive Research – October 28, 2015

National Academy of Sciences Engineering Medicine,  National Academy of Sciences,  2015.

Keywords: , , , , , , , ,

Opinion: Is CRISPR-based gene drive a biocontrol silver bullet or global conservation threat?

Webber, BLR, S.; Edwards, O. R.,  Proceedings of the National Academy of Sciences of the United States of America,  112:10565-10567. 2015.
Scientists have recognized the potential for applying gene drive technologies to the control of invasive species for several years, yet debate about the application of gene drive has been primarily restricted to mosquitoes. Recent developments in clustered regularly interspaced ...
Keywords: , , , , , , , ,

Concerning RNA-guided gene drives for the alteration of wild populations

Esvelt, KMS, Andrea L.; Catteruccia, Flaminia; Church, George M.,  eLife,  3:e03401. 2014.
Gene drives may be capable of addressing ecological problems by altering entire; populations of wild organisms, but their use has remained largely theoretical due to technical; constraints. Here we consider the potential for RNA-guided gene drives based on the CRISPR; nuclease ...
Keywords: , , , , , , , ,

Guidance on the environmental risk assessment of genetically modified animals.

EFSA GMO Panel (EFSA Panel on Genetically Modified Organisms),  EFSA Journal,  11:3200. 2013.
This document provides guidance for the environmental risk assessment (ERA) of living genetically modified (GM) animals, namely fish, insects and mammals and birds, to be placed on the European Union (EU) market in accordance with Regulation (EC) No 1829/2003 or Directive ...
Keywords: , , , , , , , ,

The Nagoya – Kuala Lumpur Supplementary Protocol on Liability and Redress to the Cartagena Protocol on Biosafety

Secretariat of the Convention on Biological Diversity,  Convention on Biodiversity,  2011:1-16. 2011.
Adopted as a supplementary agreement to the Cartagena Protocol on Biosafety, the Supplementary Protocol aims to contribute to the conservation and sustainable use of biodiversity by providing international rules and procedures in the field of liability and redress relating to ...
Keywords: , , , , , , , ,

Cartagena Protocol on Biosafety to the Convention on Biological Diversity

Secretariat of the Convention on Biological Diversity,  Convention on Biodiversity,  2000:1-19. 2000.
The Cartagena Protocol on Biosafety to the Convention on Biological Diversity is an international agreement which aims to ensure the safe handling, transport and use of living modified organisms (LMOs) resulting from modern biotechnology that may have adverse effects on ...
Keywords: , , , , , , , ,