Keywords: model

DriverSEAT: A spatially-explicit stochastic modelling framework for the evaluation of gene drives in novel target species

M. Legros and L. G. Barrett,  bioRxiv,  2022.06.13.496025. 2022.
Gene drives represent a potentially ground breaking technology for the control of undesirable species or the introduction of desirable traits in wild population, and there is strong interest in applying these technologies to a wide range of species across many domains including ...
Keywords: , , , , ,

Unbalanced selection: the challenge of maintaining a social polymorphism when a supergene is selfish

A. G. Tafreshi, S. P. Otto and M. Chapuisat,  Philos Trans R Soc Lond B Biol Sci,  377:20210197. 2022.
Supergenes often have multiple phenotypic effects, including unexpected detrimental ones, because recombination suppression maintains associations among co-adapted alleles but also allows the accumulation of recessive deleterious mutations and selfish genetic elements. Yet, ...
Keywords: , , , , ,

Mitotic exchange in female germline stem cells is the major source of Sex Ratio chromosome recombination in Drosophila pseudoobscura

S. Koury,  bioRxiv,  2022.06.07.495109. 2022.
Sex Ratio chromosomes in Drosophila pseudoobscura are selfish X chromosome variants associated with three non-overlapping inversions. In the male germline, Sex Ratio chromosomes distort segregation of X and Y chromosomes (99:1), thereby skewing progeny sex ratio. In the female ...
Keywords: , , , , ,

Spatial modelling for population replacement of mosquito vectors at continental scale

N. J. Beeton, A. Wilkins, A. Ickowicz, K. R. Hayes and G. R. Hosack,  PLOS Computational Biology,  18:e1009526. 2022.
Malaria is one of the deadliest vector-borne diseases in the world. Researchers are developing new genetic and conventional vector control strategies to attempt to limit its burden. Novel control strategies require detailed safety assessment to ensure responsible and successful ...
Keywords: , , , , ,

Combined Trojan Y Chromosome Strategy and Sterile Insect Technique to Eliminate Mosquitoes: Modelling and Analysis

J. Lyu, M. Gu, S. Wang and K. Cheng,  Mathematical Problems in Engineering,  2022:2373350. 2022.
Sterile insect technique has been successfully applied in the control of agricultural pests; however, it has a limited ability to control mosquitoes. A promising alternative approach is the Trojan Y Chromosome strategy, which works by manipulating the sex ratio of a population ...
Keywords: , , , , ,

The sterile insect technique is protected from evolution of mate discrimination

J. J. Bull and R. Gomulkiewicz,  PeerJ,  10:e13301. 2022.
Background The sterile insect technique (SIT) has been used to suppress and even extinguish pest insect populations. The method involves releasing artificially reared insects (usually males) that, when mating with wild individuals, sterilize the broods. If administered on a large ...
Keywords: , , , , ,

Mathematical modelling to assess the feasibility of Wolbachia in malaria vector biocontrol

S. Andreychuk and L. Yakob,  Journal of Theoretical Biology,  542. 2022.
Releasing mosquitoes transinfected with the endosymbiotic bacterium Wolbachia is a novel strategy for interrupting vector-borne pathogen transmission. Following its success in controlling arboviruses spread by Aedes aegypti, this technology is being adapted for anopheline malaria ...
Keywords: , , , , ,

Spatial modelling for population replacement of mosquito vectors at continental scale

N. J. Beeton, A. Wilkins, A. Ickowicz, K. R. Hayes and G. R. Hosack,  bioRxiv,  2021.10.06.463299. 2022.
Malaria is one of the deadliest vector-borne diseases in the world. Researchers are developing new genetic and conventional vector control strategies to attempt to limit its burden. Novel control strategies require detailed safety assessment to ensure responsible and successful ...
Keywords: , , , , ,

Rescue by gene swamping as a gene drive deployment strategy

K. D. Harris and G. Greenbaum,  bioRxiv,  2022.03.08.483503. 2022.
Gene drives are genetic constructs that can spread deleterious alleles with potential application to population suppression of harmful species. Given that a gene drive can potentially spill over to other populations or even other species, control measures and fail-safes ...
Keywords: , , , , ,

Gene drives and population persistence vs elimination: The impact of spatial structure and inbreeding at low density

P. J. Beaghton and A. Burt,  Theoretical Population Biology,  2022.
Synthetic gene drive constructs are being developed to control disease vectors, invasive species, and other pest species. In a well-mixed random mating population a sufficiently strong gene drive is expected to eliminate a target population, but it is not clear whether the same ...
Keywords: , , , , ,

A gene drive does not spread easily in populations of the honey bee parasite Varroa destructor

N. R. Faber, A. B. Meiborg, G. R. McFarlane, G. Gorjanc and B. A. Harpur,  Apidologie,  52:1112-1127. 2022.
Varroa mites (Varroa destructor) are the most significant threat to beekeeping worldwide. They are directly or indirectly responsible for millions of colony losses each year. Beekeepers are somewhat able to control varroa populations through the use of physical and chemical ...
Keywords: , , , , ,

Gene drives for vertebrate pest control: realistic spatial modelling of eradication probabilities and times for island mouse populations

A. Birand, P. Cassey, J. V. Ross, J. C. Russell, P. Thomas and T. A. A. Prowse,  Molecular Ecology,  2022.
Abstract Invasive alien species continue to threaten global biodiversity. CRISPR-based gene drives, which can theoretically spread through populations despite imparting a fitness cost, could be used to suppress or eradicate pest populations. We develop an individual-based, ...
Keywords: , , , , ,

Cytoplasmic incompatibility in hybrid zones: infection dynamics and resistance evolution

E. S. Røed and J. Engelstädter,  Journal of Evolutionary Biology,  2021.
Cytoplasmic incompatibility is an endosymbiont-induced mating incompatibility common in arthropods. Unidirectional cytoplasmic incompatibility impairs crosses between infected males and uninfected females, whereas bidirectional cytoplasmic incompatibility occurs when two host ...
Keywords: , , , , ,

Weakly deleterious natural genetic variation amplifies probability of resistance in multiplexed gene drive systems

B. S. Khatri and A. Burt,  bioRxiv,  2021.12.23.473701. 2021.
Evolution of resistance is a major barrier to successful deployment of gene drive systems to suppress natural populations. Multiplexed guide RNAs that require resistance mutations in all target cut sites is a promising strategy to overcome resistance. Using novel stochastic ...
Keywords: , , , , ,

Gene drives and population persistence vs elimination: the impact of spatial structure and inbreeding at low density

P. J. Beaghton and A. Burt,  bioRxiv,  2021.11.11.468225. 2021.
Synthetic gene drive constructs are being developed to control disease vectors, invasive species, and other pest species. In a well-mixed random mating population a sufficiently strong gene drive is expected to eliminate a target population, but it is not clear whether the same ...
Keywords: , , , , ,

Modeling the efficacy of CRISPR gene drive for schistosomiasis control

R. E. Grewelle, J. Perez-Saez, J. Tycko, E. K. O. Namigai, C. G. Rickards and G. A. De Leo,  bioRxiv,  2021.10.29.466423. 2021.
CRISPR gene drives could revolutionize the control of infectious diseases by accelerating the spread of engineered traits that limit parasite transmission in wild populations. While much effort has been spent developing gene drives in mosquitoes, gene drive technology in molluscs ...
Keywords: , , , , ,

A gene drive does not spread easily in populations of the honey bee parasite Varroa destructor

N. R. Faber, A. B. Meiborg, G. R. McFarlane, G. Gorjanc and B. A. Harpur,  Apidologie,  2021.
Varroa mites (Varroa destructor) are the most significant threat to beekeeping worldwide. They are directly or indirectly responsible for millions of colony losses each year. Beekeepers are somewhat able to control varroa populations through the use of physical and chemical ...
Keywords: , , , , ,

Spatial modelling for population replacement of mosquito vectors at continental scale

N. J. Beeton, A. Wilkins, A. Ickowicz, K. R. Hayes and G. R. Hosack,  bioRxiv,  2021.10.06.463299. 2021.
We explore transmission of the gene drive between the subspecies, different hybridisation mechanisms, the effects of both local dispersal and potential wind-aided migration to the spread, and the development of resistance to the gene drive. We find that given best current ...
Keywords: , , , , ,

Discrete dynamical models on Wolbachia infection frequency in mosquito populations with biased release ratios

Y. Shi and B. Zheng,  Journal of Biological Dynamics,  2021.
We develop two discrete models to study how supplemental releases affect the Wolbachia spreading dynamics in cage mosquito populations. The first model focuses on the case when only infected males are released at each generation. This release strategy has been proved to be ...
Keywords: , , , , ,

The effect of mating complexity on gene drive dynamics

P. Verma, R. G. Reeves, S. Simon, M. Otto and C. S. Gokhale,  bioRxiv,  2021.09.16.460618. 2021.
Gene drive technology is being presented as a means to deliver on some of the global challenges humanity faces today in healthcare, agriculture and conservation. However, there is a limited understanding of the consequences of releasing self-perpetuating transgenic organisms into ...
Keywords: , , , , ,

Evolutionary robustness of killer meiotic drives

P. G. Madgwick and J. B. Wolf,  Evolution Letters,  2021.
A meiotic driver is a selfish genetic element that interferes with the process of meiosis to promote its own transmission. The most common mechanism of interference is gamete killing, where the meiotic driver kills gametes that do not contain it. A killer meiotic driver is ...
Keywords: , , , , ,

Gene drive escape from resistance depends on mechanism and ecology

F. Cook, J. J. Bull and R. Gomulkiewicz,  bioRxiv,  2021.08.30.458221. 2021.
Gene drives can potentially be used to suppress pest populations, and the advent of CRISPR technology has made it feasible to engineer them in many species, especially insects. What remains largely unknown for implementations is whether anti-drive resistance will evolve to block ...
Keywords: , , , , ,

Sterile males and females can synergistically suppress wild pests targeted by sterile insect technique

Y. Ikegawa, K. Ito, C. Himuro and A. Honma,  Journal of Theoretical Biology,  530. 2021.
We constructed a mathematical model to examine the contribution of sterile males and females to the pest-control effect and the synergy between them. We consider that males seek out and court females in accord with their own female searching ability and preference, and that ...
Keywords: , , , , ,

Simulating effects of fitness and dispersal on the use of Trojan sex chromosomes for the management of invasive species

C. C. Day, E. L. Landguth, R. K. Simmons, W. P. Baker, A. R. Whiteley, P. M. Lukacs and A. Bearlin,  Journal of Applied Ecology,  2020.
The use of Trojan Y chromosomes (TYC) for controlling invasive species involves manipulating the sex chromosomes of captive-raised individuals. Following release, the offspring of these individuals consist of only one sex, thereby skewing the sex ratio of the invasive population ...
Keywords: , , , , ,

Optimal control and analysis of a modified trojan Y-Chromosome strategy

M. A. Beauregard, R. D. Parshad, S. Boon, H. Conaway, T. Griffin and J. J. Lyu,  Ecological Modelling,  416. 2020.
The Trojan Y Chromosome (TYC) strategy is a promising eradication method that attempts to manipulate the female to male ratio to promote the reduction of the population of an invasive species. The manipulation stems from an introduction of sex-reversed males, called supermales, ...
Keywords: , , , , ,

Population Consequences of Releasing Sex-Reversed Fish: Applications and Concerns

C. Wederkind,  Sex Control in Aquaculture,  Chp 8:179-188. 2018.
Sex differentiation is generally more labile in gonochoristic fish than it is, for example, in birds and mammals. Environmentally induced sex reversal is, therefore, often possible, and creates genotype‐phenotype mismatches that can be useful in population management. ...
Keywords: , , , , ,

The optimal implementation of the Trojan Y chromosome eradication strategy of invasive species

M. R. Kelly and X. Y. Wang,  Journal of Biological Systems,  25:399-418. 2017.
Invasive aquatic species continue to be a persistent problem around the world. The Trojan Y Chromosome (TYC) eradication strategy has recently been developed to help fight the problem in aquatic systems by targeting only the invasive species, sparing native marine stock. It ...
Keywords: , , , , ,

Analysis of the Trojan Y-Chromosome eradication strategy for an invasive species

X. Y. Wang, J. R. Walton, R. D. Parshad, K. Storey and M. Boggess,  Journal of Mathematical Biology,  68:1731-1756. 2013.
The Trojan Y-Chromosome (TYC) strategy, an autocidal genetic biocontrol method, has been proposed to eliminate invasive alien species. In this work, we analyze the dynamical system model of the TYC strategy, with the aim of studying the viability of the TYC eradication and ...
Keywords: , , , , ,