Keywords: spore killer

On the Mechanistic Basis of Killer Meiotic Drive in Fungi

S. J. Saupe and H. Johannesson,  Annual Review of Microbiology,  76:305-323. 2022.
Spore killers are specific genetic elements in fungi that kill sexual spores that do not contain them. A range of studies in the last few years have provided the long-awaited first insights into the molecular mechanistic aspects of spore killing in different fungal models, ...
Keywords: , , , , , , , , ,

Isolation of rfk-2 (UV) , a mutation that blocks spore killing by Neurospora Spore killer-3

A. Velazquez, E. Webber, D. O'Neil, T. Hammond and N. Rhoades,  MicroPublication Biology,  2022.
Neurospora Spore killer-3 ( Sk-3 ) is a selfish genetic element that kills spores to achieve gene drive.  Here, to help identify Sk-3’s killer, we performed a genetic screen for required for killing (rfk) mutations (see methods). The genetic screen uses Sk‑3 rskΔ × SkS ...
Keywords: , , , , , , , , ,

The spore killers, fungal meiotic driver elements

A. A. Vogan, I. Martinossi-Allibert, S. L. Ament-Velásquez, J. Svedberg and H. Johannesson,  Mycologia,  2022.
During meiosis, both alleles of any given gene should have equal chances of being inherited by the progeny. There are a number of reasons why, however, this is not the case, with one of the most intriguing instances presenting itself as the phenomenon of meiotic drive. Genes that ...
Keywords: , , , , , , , , ,

A natural fungal gene drive enacts killing through targeting DNA

A. S. Urquhart and D. M. Gardiner,  bioRxiv,  2022.01.19.477016. 2022.
Fungal spore-killers are a class of selfish genetic elements that positively bias their own inheritance by killing non-inheriting gametes following meiosis. As killing takes place specifically within the developing fungal ascus, a tissue which is experimentally difficult to ...
Keywords: , , , , , , , , ,

Molecular Mechanisms and Evolutionary Consequences of Spore Killers in Ascomycetes

S. Zanders and H. Johannesson,  Microbiology and Molecular Biology Reviews,  2021.
In this review, we examine the fungal spore killers. These are meiotic drive elements that cheat during sexual reproduction to increase their transmission into the next generation. Spore killing has been detected in a number of ascomycete genera, including Podospora, Neurospora, ...
Keywords: , , , , , , , , ,

An introgressed gene causes meiotic drive in Neurospora sitophila

J. Svedberg, A. A. Vogan, N. A. Rhoades, D. Sarmarajeewa, D. J. Jacobson, M. Lascoux, T. M. Hammond and H. Johannesson,  Proceedings of the National Academy of Sciences of the United States of America,  118:9. 2021.
Meiotic drive elements cause their own preferential transmission following meiosis. In fungi, this phenomenon takes the shape of spore killing, and in the filamentous ascomycete Neurospora sitophila, the Sk-1 spore killer element is found in many natural populations. In this ...
Keywords: , , , , , , , , ,

Invasion and maintenance of spore killers in populations of ascomycete fungi

I. Martinossi-Allibert, C. Veller, S. L. Ament-Velásquez, A. A. Vogan, C. Rueffler and H. Johannesson,  bioRxiv,  2020.04.06.026989. 2020.
We show how ploidy level, rate of selfing, and efficiency of spore killing affect the invasion probability of a driving allele and the conditions for its stable coexistence with the non-driving allele. Our model can be adapted to different fungal life-cycles, and is applied here ...
Keywords: , , , , , , , , ,

The Enterprise: A massive transposon carrying Spokt meiotic drive genes

A. A. Vogan, S. L. Ament-Velásquez, E. Bastiaans, O. Wallerman, S. J. Saupe, A. Suh and H. Johannesson,  bioRxiv,  2020.03.25.007153. 2020.
Previously, we described a large genomic feature called the Spok block which is notable due to the presence of meiotic drive genes of the Spok gene family. The Spok block ranges from 110 kb to 247 kb and can be present in at least four different genomic locations within P. ...
Keywords: , , , , , , , , ,

An introgressed gene causes meiotic drive in Neurospora sitophila

J. Svedberg, A. A. Vogan, N. A. Rhoades, D. Sarmarajeewa, D. J. Jacobson, M. Lascoux, T. M. Hammond and H. Johannesson,  bioRxiv,  2020.01.29.923946. 2020.
In this study, we identify the gene responsible for spore killing in Sk-1 by generating both long and short-read genomic data and by using these data to perform a genome wide association test. By phylogenetic analysis, we demonstrate that the gene is likely to have been ...
Keywords: , , , , , , , , ,

Combinations of Spok genes create multiple meiotic drivers in Podospora

A. A. Vogan, S. L. Ament-Velásquez, A. Granger-Farbos, J. Svedberg, E. Bastiaans, A. J. M. Debets, V. Coustou, H. Yvanne, C. Clavé, S. J. Saupe and H. Johannesson,  eLife,  8:e46454. 2019.
Meiotic drive is the preferential transmission of a particular allele during sexual reproduction. The phenomenon is observed as spore killing in multiple fungi. In natural populations of Podospora anserina, seven spore killer types (Psks) have been identified through classical ...
Keywords: , , , , , , , , ,

A family of killers

M. De Carvalho and S. E. Zanders,  eLife,  8:e49211. 2019.
Spok genes are meiotic drivers that increase their own chances of transmission by killing gametes that do not inherit them.
Keywords: , , , , , , , , ,

Identification of fk-1;, a Meiotic Driver Undergoing RNA Editing in Neurospora

N. A. Rhoades, A. M. Harvey, D. A. Samarajeewa, J. Svedberg, A. Yusifov, A. Abusharekh, P. Manitchotpisit, D. W. Brown, K. J. Sharp, D. G. Rehard, J. Peters, X. Ostolaza-Maldonado, J. Stephenson, P. K. T. Shiu, H. Johannesson and T. M. Hammond,  Genetics,  212:93. 2019.
These findings indicate that unedited and edited rfk-1 transcripts exist and that these transcripts could have different roles with respect to the mechanism of meiotic drive by spore killing. Regardless of RNA editing, spore killing only succeeds if rfk-1 transcripts avoid ...
Keywords: , , , , , , , , ,

Analysis of two additional loci in Neurospora crassa related to Spore killer-2

Turner, BC,  Fungal Genetics and Biology,  39:142-150. 2003.
Two new loci found in one strain of Neurospora crassa (P2604) collected in Malaya are related to the meiotic drive system Spore killer Sk-2. Sk-2 was found in Neurospora intermedia and introgressed into N. crassa. P2604 showed high resistance to killing when crossed to Sk-2. This ...
Keywords: , , , , , , , , ,