Keywords: system

A 2017 horizon scan of emerging issues for global conservation and biological diversity

Sutherland, WJB, P.; Broad, S.; Clout, M.; Connor, B.; Cote, I. M.; Dicks, L. V.; Doran, H.; Entwistle, A. C.; Fleishman, E.; Fox, M.; Gaston, K. J.; Gibbons, D. W.; Jiang, Z.; Keim, B.; Lickorish, F. A.; Markillie, P.; Monk, K. A.; Pearce-Higgins, J. W.; Peck, L. S.; Pretty, J.; Spalding, M. D.; Tonneijck, F. H.; Wintle, B. C.; Ockendon, N.,  Trends in Ecology & Evolution,  32:31-40. 2019.
We present the results of our eighth annual horizon scan of emerging issues likely to affect global biological diversity, the environment, and conservation efforts in the future. The potential effects of these novel issues might not yet be fully recognized or understood by the ...

A Y-chromosome shredding gene drive for controlling pest vertebrate populations

Prowse, TAAA, F.; Cassey, P.; Thomas, P.; Ross, J. V.,  eLife,  8:19. 2019.
Self-replicating gene drives that modify sex ratios or infer a fitness cost could be used to control populations of invasive alien species. The targeted deletion of Y sex chromosomes using CRISPR technology offers a new approach for sex bias that could be incorporated within ...

CRISPR in Parasitology: Not Exactly Cut and Dried!

Bryant, JMB, S.; Glover, L.; Hutchinson, S.; Rachidi, N.,  Trends in Parasitology,  35:409-422. 2019.
CRISPR/Cas9 technology has been developing rapidly in the field of parasitology, allowing for the dissection of molecular processes with unprecedented efficiency. Optimization and implementation of a new technology like CRISPR, especially in nonmodel organisms, requires ...

Gene driving the farm: who decides, who owns, and who benefits?

Montenegro de Wit, M,  Agroecology and Sustainable Food Systems,  43:1054-1074. 2019.
This commentary essay explores the social and ecological implications of gene-driving agriculture.

Gene drive inhibition by the anti-CRISPR proteins AcrIIA2 and AcrIIA4 in Saccharomyces cerevisiae

Basgall, EMG, S. C.; Goeckel, M. E.; Giersch, R. M.; Roggenkamp, E.; Schrock, M. N.; Halloran, M.; Finnigan, G. C.,  Microbiology-Sgm,  164:464-474. 2018.
Given the widespread use and application of the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas gene editing system across many fields, a major focus has been the development, engineering and discovery of molecular means to precisely control and regulate ...

Modelling the spatial spread of a homing endonuclease gene in a mosquito population

North, AB, A.; Godfray, H. C. J.,  Journal of Applied Ecology,  50:1216-1225. 2013.
Homing endonuclease genes (HEGs) exist naturally in many single-celled organisms and can show extremely strong genetic drive allowing them to spread through populations into which they are introduced. They are being investigated as tools to manipulate the populations of important ...

B chromosomes and genome size in flowering plants

Trivers, RB, A.; Palestis, B. G.,  Genome,  47:1-8. 2004.
B chromosomes are extra chromosomes found in some, but not all, individuals within a species, often maintained by giving themselves an advantage in transmission, i.e. they drive. Here we show that the presence of B chromosomes correlates to and varies strongly and positively with ...

Outcrossed sex allows a selfish gene to invade yeast populations

Goddard, MRG, D.; Burt, A.,  Proceedings of the Royal Society B-Biological Sciences,  268:2537-2542. 2001.
Homing endonuclease genes (HEGs) in eukaryotes are optional genes that have no obvious effect on host phenotype except for causing chromosomes not containing a cop), of the gene to be cut, thus causing them to be inherited at a greater than Mendelian rate via gene conversion. ...