Keywords: tailless

A selfish genetic element linked to increased lifespan impacts metabolism in female house mice

Lopes, P. C. and A. K. Lindholm,  The Journal of Experimental Biology,  2019:212704. 2019.
Gene drive systems can lead to the evolution of traits that further enhance the transmission of the driving element. In gene drive, one allele is transmitted to offspring at a higher frequency than the homologous allele. This has a range of consequences, which generally include a ...
Keywords: , , , , , ,

Controlling invasive rodents via synthetic gene drive and the role of polyandry

Manser, AC, S. J.; Sutter, A.; Blondel, D. V.; Serr, M.; Godwin, J.; Price, T. A. R.,  Proceedings of the Royal Society B-Biological Sciences,  286:9. 2019.
House mice are a major ecosystem pest, particularly threatening island ecosystems as a non-native invasive species. Rapid advances in synthetic biology offer new avenues to control pest species for biodiversity conservation. Recently, a synthetic sperm-killing gene drive ...
Keywords: , , , , , ,

Sustainability as a framework for considering gene drive mice for invasive rodent eradication

Barnhill-Dilling, SKS, M.; Blondel, D. V.; Godwin, J.,  Sustainability,  11:1334. 2019.
Gene drives represent a dynamic and controversial set of technologies with applications that range from mosquito control to the conservation of biological diversity on islands. Currently, gene drives are being developed in mice that may one day serve as an important tool for ...
Keywords: , , , , , ,

Carrying a selfish genetic element predicts increased migration propensity in free-living wild house mice

Runge, J-NL, Anna K.,  Proceedings of the Royal Society B: Biological Sciences,  285:20181333. 2018.
Life is built on cooperation between genes, which makes it vulnerable to parasitism. Selfish genetic elements that exploit this cooperation can achieve large fitness gains by increasing their transmission relative to the rest of the genome. This leads to counter-adaptations that ...
Keywords: , , , , , ,

Sperm competition suppresses gene drive among experimentally evolving populations of house mice

Manser, AL, A. K.; Simmons, L. W.; Firman, R. C.,  Molecular Ecology,  26:5784-5792. 2017.
Drive genes are genetic elements that manipulate the 50% ratio of Mendelian inheritance in their own favour, allowing them to rapidly propagate through populations. The action of drive genes is often hidden, making detection and identification inherently difficult. Yet drive ...
Keywords: , , , , , ,

Sry gene drive for rodent control: Reply to Gemmell and Tompkins

Kanavy, DS, M.,  Trends in Ecology & Evolution,  32:315-316. 2017.
We would like to thank Gemmell and Tompkins for their interest and comments onthe articlebyPiaggioet al. [1].Theissues raised by Gemmell and Tompkins [2] are very pertinent, and they correctly identified that the format of the article did not lend itself to a comprehensive ...
Keywords: , , , , , ,

No evidence for female discrimination against male house mice carrying a selfish genetic element

Sutter, AL, A. K.,  Current Zoology,  62:675-685. 2016.
Meiotic drivers distort transmission to the next generation in their favor, with detrimental effects on the fitness of their homologues and the rest of the genome. Male carriers of meiotic drivers commonly inflict costs on their mates through genetic incompatibility, reduced ...
Keywords: , , , , , ,

Meiotic drive changes sperm precedence patterns in house mice: potential for male alternative mating tactics?

Sutter, AL, A. K.,  BMC Evolutionary Biology,  16:15. 2016.
Background: With female multiple mating (polyandry), male-male competition extends to after copulation (sperm competition). Males respond to this selective pressure through physiological, morphological and behavioural adaptations. Sperm competitiveness is commonly decreased in ...
Keywords: , , , , , ,

Female house mice avoid fertilization by t haplotype incompatible males in a mate choice experiment

Manser, AK, B.; Lindholm, A. K.,  Journal of Evolutionary Biology,  28:54-64. 2015.
The t haplotype in house mice is a well-known selfish genetic element with detrimental, nonadditive fitness consequences to its carriers: recessive lethal mutations cause t/t homozygotes to perish in utero. Given the severe genetic incompatibility imposed by the t haplotype, we ...
Keywords: , , , , , ,

Detrimental effects of an autosomal selfish genetic element on sperm competitiveness in house mice

Sutter, AL, A. K.,  Proceedings of the Royal Society B-Biological Sciences,  282:1-8. 2015.
Female multiple mating (polyandry) is widespread across many animal taxa and indirect genetic benefits are a major evolutionary force favouring polyandry. An incentive for polyandry arises when multiple mating leads to sperm competition that disadvantages sperm from genetically ...
Keywords: , , , , , ,

Meiotic drive influences the outcome of sexually antagonistic selection at a linked locus

Patten, MM,  Journal of Evolutionary Biology,  27:2360-2370. 2014.
Most meiotic drivers, such as the t-haplotype in Mus and the segregation distorter (SD) in Drosophila, act in a sex-specific manner, gaining a transmission advantage through one sex although suffering only the fitness costs associated with the driver in the other. Their ...
Keywords: , , , , , ,

Transmission ratio distortion in mice

Lyon, MF,  Annual Review of Genetics,  37:393-408. 2003.
The most studied example of transmission ratio distortion (TRD) in mice is that of the t-complex. This is a variant-region of Chromosome 17 which exists as a polymorphism in wild mice. Males heterozygous for a t-haplotype and a normal Chr 17 transmit-the t haplotype to >50% of ...
Keywords: , , , , , ,

Nonrandom segregation during meiosis: the unfairness of females

de Villena, FPMS, C.,  Mammalian Genome,  12:331-339. 2001.
Most geneticists assume that chromosome segregation during meiosis is Mendelian (i.e., each allele at each locus is represented equally in the gametes). The great majority of reports that discuss non-Mendelian transmission have focused on systems of gametic selection, such as the ...
Keywords: , , , , , ,

Segregation distortion of mouse t-haplotypes: The molecular basis emerges

Schimenti, J,  Trends in Genetics,  16:240-243. 2000.
The t haplotype is an ancestral version of proximal mouse chromosome 17 that has evolved mechanisms to persist as an intact genomic variant in mouse populations. t haplotypes contain mutations that affect embryonic development, male fertility and male transmission ratio ...
Keywords: , , , , , ,

Physical mapping of male fertility and meiotic drive quantitative trait loci in the mouse t complex using chromosome deficiencies

Planchart, AY, Y.; Schimenti, J. C.,  Genetics,  155:803-812. 2000.
The t complex spans 20 cM of the proximal region of mouse chromosome 17. A variant form, the t haplotype (t), exists at significant frequencies in wild mouse populations and is characterized by the presence of inversions that suppress recombination with Mild-type (+) chromosomes. ...
Keywords: , , , , , ,

Segregation distortion in a deme structured population: opposing demands of gene, individual and group selection

van Boven, MW, F. J.,  Journal of Evolutionary Biology,  12:80-93. 1999.
The evolution of segregation distortion is governed by the interplay of selection at different levels. Despite their systematic advantage at the gamete level, none of the well-known segregation distorters spreads to fixation since they induce severe negative fitness effects at ...
Keywords: , , , , , ,

Evolution of segregation distortion: Potential for a high degree of polymorphism

van Boven, MW, F. J.,  Journal of Theoretical Biology,  192:131-142. 1998.
By means of a population genetical model, we study the evolution of segregation distortion. Most models of segregation distortion focus on a single distorter allele. In contrast, we consider the competition between a large number of distorters. Motivated by systems as the t ...
Keywords: , , , , , ,

Identification of the t complex-encoded cytoplasmic dynein light chain Tctex1 in inner arm I1 supports the involvement of flagellar dyneins in meiotic drive

Harrison, AO-C, P.; King, S. M.,  Journal of Cell Biology,  140:1137-1147. 1998.
The cytoplasmic dynein light chain Tctex1 is a candidate for one of the distorter products involved in the non-Mendelian transmission of mouse t haplotypes. It has been unclear, however, how the t-specific mutations in this protein, which is found associated with cytoplasmic ...
Keywords: , , , , , ,

Putting the brake on drive: meiotic drive of t haplotypes in natural populations of mice

Ardlie, KG,  Trends in Genetics,  14:189-193. 1998.
Mouse t haplotypes are a 'selfish' form of chromosome 17 that show non-mendelian transmission from heterozygous +/t males. The considerable transmission bias in favour of t haplotypes should result in very high frequencies of these chromosomes in natural populations, but they ...
Keywords: , , , , , ,

Identification of a male meiosis-specific gene, Tcte2, which is differentially spliced in species that form sterile hybrids with laboratory mice and deleted in t chromosomes showing meiotic drive

Braidotti, GB, D. P.,  Developmental Biology,  186:85-99. 1997.
Tcte2 (t complex testes expressed 2) is a male meiosis-specific gene that maps to band 3.3 of mouse chromosome 17. Two distinct male fertility defects, hybrid sterility and transmission ratio distortion, have previously been mapped to this region. Hybrid sterility arises in ...
Keywords: , , , , , ,

Segregation distortion in unstructured and structured populations: Competition between ‘sterile’ t haplotypes

VanBoven, MW, F. J.,  Netherlands Journal of Zoology,  46:216-226. 1996.
By means of two simple models we investigate the competition between sex-specific segregation distorters in unstructured and structured populations. The models are motivated by the t complex of the house mouse. Some variants at this gene complex, the t haplotypes, distort ...
Keywords: , , , , , ,

Competition between segregation distorters: Coexistence of ”superior” and ”inferior” haplotypes at the t complex

vanBoven, MW, F. J.; Heg, D.; Huisman, J.,  Evolution,  50:2488-2498. 1996.
By means of population genetical models, we investigate the competition between sex-specific segregation distorters. Although the models are quite general, they are motivated by a specific example, the t complex of the house mouse. Some variants at this gene complex, the t ...
Keywords: , , , , , ,

The mouse t-complex-encoded protein Tctex-1 is a light chain of brain cytoplasmic dynein

King, SMD, J. F.; Benashski, S. E.; Lye, R. J.; PatelKing, R. S.; Pfister, K. K.,  Journal of Biological Chemistry,  271:32281-32287. 1996.
Mammalian brain cytoplasmic dynein contains three light chains of M(r) = 8,000, 14,000, add 22,000 (King, S. M., Barbarese, E., Dillman, J. F., III, Patel-King, R. S., Carson, J. H., and Pfister, K. Kr (1996) J. Biol. Chem. 271, 19358-19366). Peptide sequence data (16/16 residues ...
Keywords: , , , , , ,

Low frequency of mouse t haplotypes in wild populations is not explained by modifiers of meiotic drive

Ardlie, KGS, L. M.,  Genetics,  144:1787-1797. 1996.
t haplotypes are naturally occurring forms of mouse chromosome 17 that show non-Mendelian transmission from heterozygous +/t males. In laboratory studies, transmission ratios of greater than or equal to 0.90 or higher are typically observed. With transmission ratios of this ...
Keywords: , , , , , ,

Tctex2 – a sperm tail surface protein mapping to the t-complex

Huw, LYG, A. S.; Willison, K.; Artzt, K.,  Developmental Biology,  170:183-194. 1995.
Transmission ratio distortion (TRD) in mouse t-haplotypes remains the most significant example of meiotic drive in vertebrates. While the underlying mechanism that fuels it is still mysterious, TRD is clearly a complex multigene phenomenon. The characterization of Tctex2 ...
Keywords: , , , , , ,

The evolution of lethals in the t-haplotype system of the mouse

Charlesworth, B,  Proceedings of the Royal Society B-Biological Sciences,  258:101-107. 1994.
The evolution of lethal haplotypes in the t-haplotype segregation distortion system of Mus is examined by mathematical and computer models. The models assume that there is reproductive compensation for the loss of lethal embryos, such that the net reproductive success of a female ...
Keywords: , , , , , ,

The peculiar journey of a selfish chromosome: Mouse t-haplotypes and meiotic drive

Silver, LM,  Trends in Genetics,  9:250-254. 1993.
Mouse t haplotypes are descendents of a variant form of chromosome 17 that evolved the ability to propagate itself at the expense of the wild-type homolog from heterozygous +/t males. Although once enigmatic, these widespread selfish chromosomes have revealed many of their ...
Keywords: , , , , , ,

Evolution of the mouse t-haplotype – Recent and worldwide introgression to Mus musculus

Morita, TK, H.; Murata, K.; Nozaki, M.; Delarbre, C.; Willison, K.; Satta, Y.; Sakaizumi, M.; Takahata, N.; Gachelin, G.; Matsushiro, A.,  Proceedings of the National Academy of Sciences of the United States of America,  89:6851-6855. 1992.
Mouse t haplotypes are variants of chromosome 17, consisting of four inversions. Despite the homozygous lethality and pleiotropic effect on embryonic development, sperm production, and recombination, they have widely spread in natural populations of the house mouse (10-40% in ...
Keywords: , , , , , ,

A comparative approach to the population genetics theory of segregation distortion

Feldman, MWO, Sarah P.,  American Naturalist,  137:443-456. 1991.
Mathematical models of four well-known naturally occurring systems of segregation distortion are compared. These include the sex-ratio chromosome of Drosophila pseudoobscura, the Segregation Distorter (SD) complex of D. melanogaster, the t locus in Mus musculus, and the sex-ratio ...
Keywords: , , , , , ,

Meiotic drive of t-haplotypes – chromosome segregation in mice with tertiary trisomy

Agulnik, AIA, S. I.; Ruvinsky, A. O.,  Genetical Research,  57:51-54. 1991.
The properties of the t haplotypes, specific mutant states of the proximal region of chromosomes 17 in the house mouse, are of continuing interest. One such property is increased transmission of the t haplotype by heterozygous t/+ males to offspring. Using the reciprocal ...
Keywords: , , , , , ,

Meiotic drive of t haplotypes: chromosome segregation in mice with tertiary trisomy

Agulnik, AIA, Sergei I.; Ruvinsky, Anatoly O.,  Genetics Research,  57:51. 1991.
The properties of the / haplotypes, specific mutant states of the proximal region of chromosomes17 in the house mouse, are of continuing interest. One such property is increased transmission ofthe / haplotype by heterozygous // + males to offspring. Using ...
Keywords: , , , , , ,

Segregation distorters

Lyttle, TW,  Annual Review of Genetics,  25:511-557. 1991.
Segregation distorters are genetic elements that exhibit the phenomenon of meiotic drive; that is, the mechanics of the meiotic divisions cause one member of a pair of heterozygous alleles or heteromorphic chromosomes to be transmitted to progeny in excess of the expected ...
Keywords: , , , , , ,

The Genetic Basis of Transmission-Ratio Distortion and Male Sterility Due to the t Complex

Lyon, MF,  American Naturalist,  137:349-358. 1991.
The abnormal transmission ratios observed in male mice heterozygous for a complete t haplotype have been shown by breeding studies to be due to three or more distorter genes acting on a responder gene. The action of the t form of the responder is relatively resistant to this ...
Keywords: , , , , , ,

Behavioral reduction in the transmission of deleterious t-haplotypes by wild house mice

Lenington, SH, I. L.,  The American Naturalist,  137:366-378. 1991.
About 25% of wild house mice are heterozygous (+/t) for a variable recessive haplotype of the T locus. Although t haplotypes are highly deleterious when homozygous, they are maintained in wild mouse populations because they are associated with transmission-ratio distortion in ...
Keywords: , , , , , ,

Molecular and chromosomal studies on the origin of t-haplotypes in mice

Hammer, MF,  American Naturalist,  137:359-365. 1991.
Mouse t haplotypes are variant forms of the proximal third of chromosome 17 that enhance their representation in the gene pool by means of a male-specific transmission-ratio distortion. As with other systems of meiotic drive, they are maintained as independent genetic entities by ...
Keywords: , , , , , ,

Genetics-driving genes and chromosomes

Charlesworth, B,  Nature,  332:394-395. 1988.
Thereare several genetic and chromosomal systems in which Mendel's first law - the equal probability of transmission of maternal and paternal alternative alleles or homologues - is violated. This phenomenon was named 'meiotic drive' in 1957 by Sandler and Novitski, who drew ...
Keywords: , , , , , ,

Analysis of a general population genetic model of meiotic drive

Hartl, DL,  Evolution,  24:538-545. 1970.
The purpose of this article is to present the detailed solution of a model of meiotic drive which Lewontin (1968) has suggested would be helpful in understanding the evo- lutionary dynamics of the t-alleles in the house mouse. Because mice tend to breed in small endogamous family ...
Keywords: , , , , , ,

Studies of the genetic variability in populations of wild house mice .2. Analysis of eight additional alleles at locus – T

L. C. Dunn,  Genetics,  42:299-311. 1957.
1 Eight additional lethal alleles at locus T are described, each derived from a wild heterozygote in one of six different wild populations. 2. The frequency of heterozygotes appears to be high in most wild populations, possibly as high as 50 percent. 3. In two of the ...
Keywords: , , , , , ,

Sur la reproduction des souris anoures

N. Dobrovolskaia-Zavadskaia and N. Kobozieff,  Comptes rendus des séances de la Société de biologie et de ses filiales,  97:116-119. 1927.
Nous ne connaissons que deux lignees de Souris sans queue, celle de Lang (1913), et cell de Duboscq (1922). L’elevange de Lang (lignee des Souris brachyures et anoures du preparateur Alfred Nageli) a donne 199 Souris normales, pour 173 brachyures et 9 anoures. Croisses entre ...
Keywords: , , , , , ,