Keywords: transgenic mosquitoes

Intron-derived small RNAs for silencing viral RNAs in mosquito cells

P. Y. L. Tng, L. Z. Carabajal Paladino, M. A. E. Anderson, Z. N. Adelman, R. Fragkoudis, R. Noad and L. Alphey,  PLOS Neglected Tropical Diseases,  16:e0010548. 2022.
Aedes aegypti and Ae. albopictus are the main vectors of mosquito-borne viruses of medical and veterinary significance. Many of these viruses have RNA genomes. Exogenously provided, e.g. transgene encoded, small RNAs could be used to inhibit virus replication, breaking the ...
Keywords: , , ,

The AalNix3&4 isoform is required and sufficient to convert Aedes albopictus females into males

Y. Zhao, B. Jin, P. Liu, X. Xiao, L. Cai, Z. Xie, L. Kong, T. Liu, W. Yang, Y. Wu, J. Gu, Z. Tu, A. A. James and X.-G. Chen,  PLOS Genetics,  18:e1010280. 2022.
Author summary Nix serves as a conserved male-determining factor in the two most important mosquito arboviral vectors, Ae. aegypti and Ae. albopictus. AaeNix alone can convert Ae. aegypti females into fertile but flightless males. AalNix has four alternative splice isoforms ...
Keywords: , , ,

Modifying mosquitoes to suppress disease transmission: Is the long wait over?

J. R. Powell,  Genetics,  2022.
For more than 50 years it has been a dream of medical entomologists and public health workers to control diseases like malaria and dengue fever by modifying, through genetics and other methods, the arthropods that transmit them to humans. A brief synopsis of the history of ...
Keywords: , , ,

Self-Deleting Genes Could Control Mosquitoes And Prevent Vector-Borne Diseases

A. Russell,  Texas AM TODAY,  2022.
Texas A&M AgriLife Research scientists are testing a technology to make temporary genetic modifications in mosquitoes that self-delete over time. The mechanism to make temporary genetic changes could be important for scientists hoping to modify mosquitoes in ways that help manage ...
Keywords: , , ,

Brit firm sparks fury after ‘releasing genetically modified mosquitoes’ into wild

C. Lawrence-Jones,  Daily Star,  2022.
A British company has sparked fury after releasing genetically modified mosquitoes into the wild that critics say could produce new strains of super-mozzies. UK-based Oxitec say they've hacked the insects' genetic make up and hope it will ultimately kill off all-female offspring ...
Keywords: , , ,

Engineering a self-eliminating transgene in the yellow fever mosquito, Aedes aegypti

K. Chae, C. Dawson, C. Valentin, B. Contreras, J. Zapletal, K. M. Myles and Z. N. Adelman,  PNAS Nexus,  2022.
Promising genetics-based approaches are being developed to reduce or prevent the transmission of mosquito-vectored diseases. Less clear is how such transgenes can be removed from the environment, a concern that is particularly relevant for highly invasive gene drive transgenes. ...
Keywords: , , ,

Self-eliminating genes tested on mosquitoes

A. Russell,  AGRILIFE Today,  2022.
Texas A&M AgriLife Research scientists have tested a technology to make temporary genetic modifications in mosquitoes. The modifications self-delete over time. Texas A&M AgriLife Research scientists published an article detailing a mechanism to make temporary genetic alterations ...
Keywords: , , ,

Fighting the world’s most deadly animal: the mosquito

M. Rozenbaum,  Understanding Animal Research,  2021.
n the first, sterile male mosquitos are mass produced and released into the wild. These sterile males mate with wild females who then lay sterile eggs which will not hatch. This approach has been shown to reduce wild populations by as much as 90% in trials with Aedes aegypt. The ...
Keywords: , , ,