Keywords: Woldbachia

Wolbachia endosymbionts manipulate the self-renewal and differentiation of germline stem cells to reinforce fertility of their fruit fly host

S. L. Russell, J. R. Castillo and W. T. Sullivan,  PLOS Biology,  21:e3002335. 2023.
The alphaproteobacterium Wolbachia pipientis infects arthropod and nematode species worldwide, making it a key target for host biological control. Wolbachia-driven host reproductive manipulations, such as cytoplasmic incompatibility (CI), are credited for catapulting these ...
Keywords: , , , , ,

Harnessing Wolbachia cytoplasmic incompatibility alleles for confined gene drive: A modeling study

J. Li and J. Champer,  PLOS Genetics,  19:e1010591. 2023.
Wolbachia are maternally-inherited bacteria, which can spread rapidly in populations by manipulating reproduction. cifA and cifB are genes found in Wolbachia phage that are responsible for cytoplasmic incompatibility, the most common type of Wolbachia reproductive interference. ...
Keywords: , , , , ,

Harnessing Wolbachia cytoplasmic incompatibility alleles for confined gene drive: a modeling study

J. Li and J. Champer,  bioRxiv,  2022.08.09.503337. 2022.
By using both mathematical and simulation models, we found that a drive containing CifA and CifB together create a confined drive with a moderate to high introduction threshold. When introduced separately, they act as a self-limiting drive. We observed that the performance of ...
Keywords: , , , , ,

cifB-transcript levels largely explain cytoplasmic incompatibility variation across divergent Wolbachia

J. D. Shropshire, E. Hamant, W. R. Conner and B. S. Cooper,  PNAS Nexus,  2022.
Divergent hosts often associate with intracellular microbes that influence their fitness. Maternally transmitted Wolbachia bacteria are the most common of these endosymbionts due largely to cytoplasmic incompatibility (CI) that kills uninfected embryos fertilized by ...
Keywords: , , , , ,

Establishment of Wolbachia infection in Aedes aegypti from Pakistan via embryonic microinjection and semi-field evaluation of general fitness of resultant mosquito population

M. S. Sarwar, N. Jahan, A. Ali, H. K. Yousaf and I. Munzoor,  Parasites and Vectors,  15:191. 2022.
BACKGROUND: Dengue is a mosquito-borne viral disease that is mainly spread by Aedes aegypti. It is prevalent on five continents, predominantly in tropical and sub-tropical zones across the world. Wolbachia bacteria have been extensively used in vector control strategies ...
Keywords: , , , , ,

Aedes aegypti abundance and insecticide resistance profiles in the applying Wolbachia to eliminate dengue trial

W. Tantowijoyo, S. K. Tanamas, I. Nurhayati, S. Setyawan, N. Budiwati, I. Fitriana, I. Ernesia, D. S. Wardana, E. Supriyati, E. Arguni, Y. Meitika, E. Prabowo, B. Andari, B. R. Green, L. Hodgson, E. Rancès, P. A. Ryan, S. L. O'Neill, K. L. Anders, M. R. A,  PLOS Neglected Tropical Diseases,  16:e0010284. 2022.
The Applying Wolbachia to Eliminate Dengue (AWED) trial was a parallel cluster randomised trial that demonstrated Wolbachia (wMel) introgression into Ae. aegypti populations reduced dengue incidence. In this predefined substudy, we compared between treatment arms, the relative ...
Keywords: , , , , ,

Wolbachia reduces virus infection in a natural population of Drosophila

R. Cogni, S. D. Ding, A. C. Pimentel, J. P. Day and F. M. Jiggins,  Communications Biology,  4:1327. 2021.
Wolbachia is a maternally transmitted bacterial symbiont that is estimated to infect approximately half of arthropod species. In the laboratory it can increase the resistance of insects to viral infection, but its effect on viruses in nature is unknown. Here we report that in a ...
Keywords: , , , , ,

Wolbachia-mediated sterility suppresses Aedes aegypti populations in the urban tropics

Project Wolbachia-Singapore Consortium,  medRxiv,  2021.
Incompatible insect technique (IIT) via releases of male Wolbachiainfected mosquitoes is a promising tool for dengue control. In a three-year trial in Singaporean high-rise housing estates, we demonstrated that Wolbachia-based IIT dramatically reduces both wildtype Aedes aegypti ...
Keywords: , , , , ,

TSETSE GENETICS: Contributions to Biology, Systematics, and Control of Tsetse Flies

R. H. Gooding and E. S. Krafsur,  Annual Review of Entomology,  50:101-123. 2005.
Tsetse flies (Diptera: Glossinidae) constitute a small, ancient taxon of exclusively hematophagous insects that reproduce slowly and viviparously. Because tsetse flies are the only vectors of pathogenic African trypanosomes, they are a potent and constant threat to humans and ...
Keywords: , , , , ,