Gene drives: The good, the bad, and the hype

Ouagrham-Gormley, SBV, Kathleen M.,  The Bulletin of the Atomic Scientists,  2016.

Since the early 2000s, many advances in the life sciences, such as the artificial synthesis of the poliovirus and the gain-of-function experiments that enhanced the transmissibility of the H5N1 flu virus, have led to warnings that bioweapons development would soon be getting easier, cheaper, and faster for states and non-state actors alike. The new gene-editing technique known as Crispr has raised similar concerns because it allows researchers to edit genomes precisely, quickly, and cheaply. It has also facilitated the development of “gene drives,” which in theory allow scientists to permanently introduce a genetic alteration into an entire animal or plant population. Gene drives are being investigated as tools to eradicate infectious diseases or control pests that cause agricultural, economic, and environmental damages; yet they have also raised concerns. The absence of clear safety guidelines, coupled with ambiguous government regulations, has nurtured fears of an accidental or voluntary release of a gene drive in nature that could cause irreparable damage. On the security front, the presumed simplicity and accessibility of Crispr raise the possibility that states, terrorists, or rogue scientists might use the technology to modify genomes to develop malicious gene drives and create novel bioweapons that could spread more quickly, cheaply, and globally than traditional bioweapons agents.