Breakdown of reproductive isolation facilitates flow of useful trait genes into crop plants from their wild relatives. Hybrid sterility, a major form of reproductive isolation exists between cultivated rice (Oryza sativa) and wild rice (O. meridionalis, Mer). Here, we report the cloning of qHMS1, a quantitative trait locus controlling hybrid male sterility between these two species. Like qHMS7, another locus we cloned previously, qHMS1 encodes a toxin-antidote system, but differs in the encoded proteins, their evolutionary origin, and action time point during pollen development. In plants heterozygous at qHMS1, ~ 50% of pollens carrying qHMS1-D (an allele from cultivated rice) are selectively killed. In plants heterozygous at both qHMS1 and qHMS7, ~ 75% pollens without co-presence of qHMS1-Mer and qHMS7-D are selectively killed, indicating that the antidotes function in a toxin-dependent manner. Our results indicate that different toxin-antidote systems provide stacked reproductive isolation for maintaining species identity and shed light on breakdown of hybrid male sterility.
https://www.geneconvenevi.org/wp-content/uploads/2020/04/Nature-Communications-4.png300300Alex Sullivan/wp-content/uploads/2019/10/GC-color-logo-for-header-3277-x-827-1030x260.pngAlex Sullivan2023-11-18 09:43:222023-11-21 10:02:52A toxin-antidote system contributes to interspecific reproductive isolation in rice