Biologists create new genetic systems to neutralize gene drives

University of California San Diego,  ScienceDaily,  2020.

Although the newest gene drives have been proven to spread efficiently as designed in laboratory settings, concerns have been raised regarding the safety of releasing such systems into wild populations. Questions have emerged about the predictability and controllability of gene drives and whether, once let loose, they can be recalled in the field if they spread beyond their intended application region.

Now, scientists at the University of California San Diego and their colleagues have developed two new active genetic systems that address such risks by halting or eliminating gene drives in the wild. On Sept.18, 2020 in the journal Molecular Cell, research led by Xiang-Ru Xu, Emily Bulger and Valentino Gantz in the Division of Biological Sciences offers two new solutions based on elements developed in the common fruit fly.

The first neutralizing system, called e-CHACR (erasing Constructs Hitchhiking on the Autocatalytic Chain Reaction) is designed to halt the spread of a gene drive by “shooting it with its own gun.” e-CHACRs use the CRISPR enzyme Cas9 carried on a gene drive to copy itself, while simultaneously mutating and inactivating the Cas9 gene. Xu says an e-CHACR can be placed anywhere in the genome.

The second neutralizing system, called ERACR (Element Reversing the Autocatalytic Chain Reaction), is designed to eliminate the gene drive altogether. ERACRs are designed to be inserted at the site of the gene drive, where they use the Cas9 from the gene drive to attack either side of the Cas9, cutting it out. Once the gene drive is deleted, the ERACR copies itself and replaces the gene-drive.


More related to this:

Precision control of CRISPR-Cas9 using small molecules and light

Cas9-triggered chain ablation of cas9 as a gene drive brake

Can CRISPR-based gene drive be confined in the Wild? A question for molecular and population biology

A Controversial Swarm Of Genetically Modified Mosquitoes In A Lab In Italy

Gene drive systems in mosquitoes: rules of the road