Confinement of gene drive systems to local populations: A comparative analysis
Confinement of gene drive systems to local populations: A comparative analysis
Tags: Gene drive, Other arthropods, Toxin-antidote, UnderdominanceMarshall, JMH, B. A., Journal of Theoretical Biology, 294:153-171. 2012.
Mosquito-borne diseases such as malaria and dengue fever pose a major health problem through much of the world. One approach to disease prevention involves the use of selfish genetic elements to drive disease-refractory genes into wild mosquito populations. Recently engineered synthetic drive systems have provided encouragement for this strategy; but at the same time have been greeted with caution over the concern that transgenes may spread into countries and communities without: their consent. Consequently, there is also interest in gene drive systems that, while strong enough to bring about local population replacement, are unable to establish themselves beyond a partially isolated release site, at least during the testing phase. Here, we develop simple deterministic and stochastic models to compare the confinement properties of a variety of gene drive systems. Our results highlight several systems with desirable features for confinement-a high migration rate required to become established in neighboring populations, and low-frequency persistence in neighboring populations for moderate migration rates. Single-allele underdominance and single-locus engineered underdominance have the strongest confinement properties, but are difficult to engineer and require a high introduction frequency, respectively. Toxin-antidote systems such as Semele. Merea and two-locus engineered underdominance show promising confinement properties and require lower introduction frequencies. Killer-rescue is self-limiting in time, but is able to disperse to significant levels in neighboring populations. We discuss the significance of these results in the context of a phased release of transgenic mosquitoes, and the need for characterization of local ecology prior to a release. (C) 2011 Elsevier Ltd. All rights reserved.