CRISPR-based gene-drives: from eukaryotes to prokaryotes

Nizet, V.,  Bioengineering Community,  2019.

Active genetics technology greatly biases transmission of genetic traits, bypassing traditional constraints of Mendelian inheritance and spreading rapidly through wild populations (1). Molecularly defined gene drive constructs in Saccharomyces cerevisiae were copied at efficiencies exceeding 99% when mated to wild yeast (2). Using active genetics to bias inheritance of desired alleles in laboratory mice appears to enable rapid assembly of otherwise impractical genotypes involving multiple homozygous genes (3). In another example, vector mosquito Anopheles stephensi was engineered to carry Cas9, a gRNA and antimalarial gene cassette and might be introduced to block propagation of the malaria parasite Plasmodium falciparum (4).