Valderrama, J. A., S. S. Kulkarni, V. Nizet and E. Bier,
Nature Communications,
10:5726.
2019.
Gene-drive systems in diploid organisms bias the inheritance of one allele over another. CRISPR-based gene-drive expresses a guide RNA (gRNA) into the genome at the site where the gRNA directs Cas9-mediated cleavage. In the presence of Cas9, the gRNA cassette and any linked cargo sequences are copied via homology-directed repair (HDR) onto the homologous chromosome. Here, we develop an analogous CRISPR-based gene-drive system for the bacterium Escherichia coli that efficiently copies a gRNA cassette and adjacent cargo flanked with sequences homologous to the targeted gRNA/Cas9 cleavage site. This “pro-active” genetic system (Pro-AG) functionally inactivates an antibiotic resistance marker on a high copy number plasmid with ~ 100-fold greater efficiency than control CRISPR-based methods, suggesting an amplifying positive feedback loop due to increasing gRNA dosage. Pro-AG can likewise effectively edit large plasmids or single-copy genomic targets or introduce functional genes, foreshadowing potential applications to biotechnology or biomedicine.
https://www.geneconvenevi.org/wp-content/uploads/2020/04/Nature-Communications-4.png300300David Obrochtahttps://www.geneconvenevi.org/wp-content/uploads/2024/08/fnih-rm-mid.pngDavid Obrochta2019-12-17 15:48:282024-09-18 10:41:35A bacterial gene-drive system efficiently edits and inactivates a high copy number antibiotic resistance locus