A Sterile Solution: How Crispr Could Protect Wild Salmon

L. Abend,  UNDARK,  2021.

In an attempt to prevent escaped fish from interbreeding with their wild counterparts and threatening the latter’s genetic diversity, molecular biologist Anna Wargelius and her team at the Institute of Marine Research in Norway have spent years working on ways to induce sterility in Atlantic salmon. Farmed salmon that cannot reproduce, after all, pose no threat to the gene pool of wild stocks, and Wargelius has successfully developed a technique that uses the gene-editing technology Crispr to prevent the development of the cells that would otherwise generate functioning sex organs. In fact, Wargelius’ team was a little too successful. To be financially viable, commercial fish farms need at least some of their stock to reproduce. So the scientists went a step further, developing a method of temporarily reversing the modification they had already made. They’ve created what they call “sterile parents.” The term may sound like an oxymoron, but the sterile parents have the potential to solve one of the most pressing problems facing salmon aquaculture, both in Norway and around the world. Wargelius says it could be up to a decade before the results of her work are commercially available, but once they are, they have the potential to make an already burgeoning food source markedly more friendly on the environment. And by prioritizing environmental concerns and employing a technique that simply turns off a gene rather than introducing one from a different species, Wargelius and her team may contribute to a shift in how genetic engineering is perceived in Norway, a country with some of the strictest regulations regarding genetically modified organisms on the books.

In an attempt to prevent escaped fish from interbreeding with their wild counterparts and threatening the latter’s genetic diversity, molecular biologist Anna Wargelius and her team at the Institute of Marine Research in Norway have spent years working on ways to induce sterility in Atlantic salmon. Farmed salmon that cannot reproduce, after all, pose no threat to the gene pool of wild stocks, and Wargelius has successfully developed a technique that uses the gene-editing technology Crispr to prevent the development of the cells that would otherwise generate functioning sex organs. In fact, Wargelius’ team was a little too successful. To be financially viable, commercial fish farms need at least some of their stock to reproduce. So the scientists went a step further, developing a method of temporarily reversing the modification they had already made. They’ve created what they call “sterile parents.” The term may sound like an oxymoron, but the sterile parents have the potential to solve one of the most pressing problems facing salmon aquaculture, both in Norway and around the world. Wargelius says it could be up to a decade before the results of her work are commercially available, but once they are, they have the potential to make an already burgeoning food source markedly more friendly on the environment. And by prioritizing environmental concerns and employing a technique that simply turns off a gene rather than introducing one from a different species, Wargelius and her team may contribute to a shift in how genetic engineering is perceived in Norway, a country with some of the strictest regulations regarding genetically modified organisms on the books.


More related to this:

Company uses engineered mosquitoes to prevent diseases

Transgenic Aedes aegypti Mosquitoes Transfer Genes into a Natural Population

Gene Drive: The What, How, Why, and Whether We Should

Genome Editing in Food and Farming: Risks and unexpected consequences