Keywords: CRISPR
To CRISPR or Not to CRISPR? Ethical Considerations in Gene-Editing InsectsBrendan Parent, Meghan Barrett, American Entomologist, 70:54-57. 2024.Genetically modified corn has helped feed the world (Hernandes-Lopes et al. 2023). Genetically modified mosquitoes could help eliminate devastating diseases like malaria (Hammond and Galizi 2017). Plainly, gene editing can serve some important human interests. Still, many people ... |
|
The ultra-selfish geneMathias Kirk Bonde, Works in Progress, 2024.Almost every cell in our bodies contains 23 pairs of chromosomes, which are packages of the DNA and genes that provide the code for producing living things. Sperm and egg cells, however, each contain only one set of chromosomes. This set of chromosomes has been recombined from ... |
|
Population suppression by release of insects carrying a dominant sterile homing gene drive targeting doublesex in DrosophilaChen, W., Guo, J., Liu, Y. et al., Nature Communications, 15:8053. 2024.CRISPR homing gene drives can suppress pest populations by targeting female fertility genes, converting wild-type alleles into drive alleles in the germline of drive heterozygotes. fsRIDL (female-specific Release of Insects carrying a Dominant Lethal) is a self-limiting ... |
|
New genetic-editing technique to alter the traits and fates of wild populationsLori Dajose, CalTech, 2024.Gene drives are a common technology used to insert a novel gene into a population—for example, to make mosquitos resistant to malaria. They can also be used to modify existing genes, such as making herbicide-resistant weeds susceptible to herbicides once again or even to ... |
|
Advancements and Future Prospects of CRISPR-Cas-Based Population Replacement Strategies in Insect Pest ManagementZhao Y, Li L, Wei L, Wang Y, Han Z., Insects, 15. 2024.Many insects are categorized as agricultural pests due to their ability to transmit diseases and damage crops, which results in significant economic losses. Scientists have proposed two main pest control strategies: population suppression, aimed at reducing the size or ... |
|
World Mosquito Day: Gene Drives and CRISPR TechnologyPublic Health On Call, YouTube, 2024.About this episode: World Mosquito Day, observed annually on August 20th, commemorates British doctor Sir Ronald Ross's discovery in 1897 that female Anopheles mosquitoes transmit malaria to humans. More than a century later, major advancements like genetically modifying ... |
|
Generating and testing the efficacy of reagents for CRISPR/Cas9 homology directed repair-based manipulations in TriboliumHannah C Markley, Kennedy J Helms, Megan Maar, Gabriel E Zentner, Michael J Wade, Andrew C Zelhof, Journal of Insect Science, 24. 2024.CRISPR/Cas9 manipulations are possible in many insects and ever expanding. Nonetheless, success in one species and techniques developed for it are not necessarily applicable to other species. As such, the development and expansion of CRISPR-based (clustered regularly interspaced ... |
|
Gene drives: an alternative approach to malaria control?Naidoo, K., Oliver, S.V., Gene Therapy, 2024.Genetic modification for the control of mosquitoes is frequently touted as a solution for a variety of vector-borne diseases. There has been some success using non-insecticidal methods like sterile or incompatible insect techniques to control arbovirus diseases. However, control ... |
|
Assessing CRISPR/Cas9 potential in SDG3 attainment: malaria elimination—regulatory and community engagement landscapeSnuzik, A., Malaria Journal, 23. 2024.Elimination of malaria has become a United Nations member states target: Target 3.3 of the sustainable development goal no. 3 (SDG3). Despite the measures taken, the attainment of this goal is jeopardized by an alarming trend of increasing malaria case incidence. Globally, there ... |
|
99% gene transmission possible, China’s CRISPR tool boosts food securityGairika Mitra, Interesting Engineering, 2024.Chinese scientists have engineered a solution by which they could bypass natural plant gene inheritance. They aim to deploy a CRISPR-based gene editing system to help the transmission of preferred genes even when they aren’t suitable for a plant. The scientists devised a ... |
|
Chinese scientists find natural selection loophole that could help transform food securityVictoria Bela, South China Morning Post, 2024.Scientists in China have found a way to bypass natural plant gene inheritance, by using a CRISPR-based gene editing system to boost the transmission of preferred genes even when they are detrimental to a plant. By harnessing a system that uses both a toxin and an antidote to ... |
|
A New CRISPR-Driven Technology for Gene Drive in PlantsLori Dajose, CalTech, 2024.Spreading a specific genetic trait through a population, even if that trait does not benefit those who carry it, is the purpose of a "gene drive." Gene drives can be used for many different applications. These are divided into two broad categories: population modification and ... |
|
MGDrivE 3: A decoupled vector-human framework for epidemiological simulation of mosquito genetic control tools and their surveillanceMondal A, Sánchez C. HM, Marshall JM, PLoS Computational Biology, 20. 2024.Novel mosquito genetic control tools, such as CRISPR-based gene drives, hold great promise in reducing the global burden of vector-borne diseases. As these technologies advance through the research and development pipeline, there is a growing need for modeling frameworks ... |
|
Germline Cas9 promoters with improved performance for homing gene driveDu, J., Chen, W., Jia, X. et al., Nature Communications, 15:4560. 2024.Gene drive systems could be a viable strategy to prevent pathogen transmission or suppress vector populations by propagating drive alleles with super-Mendelian inheritance. CRISPR-based homing gene drives convert wild type alleles into drive alleles in heterozygotes with Cas9 and ... |
|
Altering traits and fates of wild populations with Mendelian DNA sequence modifying Allele SailsMichelle L. Johnson, Bruce A. Hay, Maciej Maselko, Nature Communications, 15. 2024.Population-scale genome editing can be used to alter the composition or fate of wild populations. One approach to achieving these aims utilizes a synthetic gene drive element—a multi-gene cassette—to bring about an increase in the frequency of an existing allele. However, the ... |
|
Alpha-mannosidase-2 modulates arbovirus infection in a pathogen- and Wolbachia-specific manner in Aedes aegypti mosquitoesNadya Urakova, Renuka E. Joseph, Allyn Huntsinger, Vanessa M. Macias, Matthew J. Jones, Leah T. Sigle, Ming Li, Omar S. Akbari, Zhiyong Xi, Konstantinos Lymperopoulos, Richard T. Sayre, Elizabeth A. McGraw, Jason L. Rasgon, Insect Molecular Biology, 2024.Multiple Wolbachia strains can block pathogen infection, replication and/or transmission in Aedes aegypti mosquitoes under both laboratory and field conditions. |
|
CRISPR could eradicate horrific parasite that’s killing cattleKristin Houser, Freethink, 2024.Uruguay is developing a CRISPR gene drive to eradicate the New World screwworm, a parasitic fly that kills cattle in a painful, grisly fashion. Releasing it into the wild would have risks, but if it works, it could help rid South America of this horrific agricultural pest. The ... |
|
Un1Cas12f1 and Cas9 gene drive in HSV1: viruses that ‘infect’ virusesQiaorui Yao, Zhuangjie Lin, Keyuan Lai, Xianying Zeng, Guanxiong Lei, Tongwen Zhang, Hongsheng Dai, bioRxiv, 2024.Synthetic CRISPR-Cas9 gene drive has been developed as a potential tool to control harmful species. However, Cas9 gene drive faces high resistance rate and mitigation strategies developed so far are difficult to implement. Furthermore, studying the resistance to gene drive is ... |
|
Gene Drive Systems To Control Aedes Aegypti Mosquitoes Make HeadwayJoshua Ang, Outreach Network for Gene Drive Research, 2024.Aedes aegypti mosquitoes are known vectors of several diseases, including dengue, chikungunya, yellow fever, and Zika, which impact millions of people worldwide each year. The effectiveness of existing insecticide-based methods to control this mosquito is threatened by growing ... |
|
Revolutionizing Livestock Biosecurity: Using CRISPR Technology to Combat the New World ScrewwormDr. Jessica Nelson, Medriva, 2024.The New World screwworm, a persistent parasite responsible for significant damage to the global livestock industry, may soon meet its match. Researchers at Uruguay's National Institute of Agricultural Research (INIA) have developed a gene drive using CRISPR technology to combat ... |
|
Uruguay wants to use gene drives to eradicate devastating screwwormsAbdullahi Tsanni, MIT Technology Review, 2024.On a warm, sunny day in Montevideo, Uruguay, the air is smogless and crisp. Inside a highly secured facility at the National Institute of Agricultural Research (INIA) are a sophisticated gene gun, giant microscopes, and tens of thousands of gene-edited flies, their bright blue ... |
|
Genome editing in pests: basic science to applicationsChen, X., Palli, S.R., Journal of Pest Science, 2024.Recent developments in sequencing technologies produced enormous data on gene sequences and the identity of genes in many pest insects and disease vectors. However, the function of many of these genes is unknown. Functional genomics studies to uncover gene function in pest ... |
|
Transforming malaria prevention and control: the prospects and challenges of gene drive technology for mosquito managementYusuf Amuda Tajudeen, Habeebullah Jayeola Oladipo, Iyiola Olatunji Oladunjoye, Muhammad Kamaldeen Oladipo, Hameedat Damilola Shittu, Imam-Fulani Abdulmumeen, Abdullateef Opeyemi Afolabi and Mona Said El-Sherbini, Annals of Medicine, 55. 2024.In the era of insecticides and anti-malarial drug resistance, gene drive technology holds considerable promise for malaria control. Gene drive technology deploys genetic modifications into mosquito populations to impede their ability to transmit the malaria parasite. This can be ... |
|
A multiplexed, confinable CRISPR/Cas9 gene drive can propagate in caged Aedes aegypti populationsAnderson, M.A.E., Gonzalez, E., Edgington, M.P. et al., Nature Communications, 15. 2024.Aedes aegypti is the main vector of several major pathogens including dengue, Zika and chikungunya viruses. Classical mosquito control strategies utilizing insecticides are threatened by rising resistance. This has stimulated interest in new genetic systems such as gene ... |
|
Engineered Antiviral Sensor Targets Infected MosquitoesElena Dalla Benetta, Adam J. López-Denman, Hsing-Han Li, Reem A. Masri, Daniel J. Brogan, Michelle Bui, Ting Yang, Ming Li, Michael Dunn, Melissa J. Klein, Sarah Jackson, Kyle Catalan, Kim R. Blasdell, Priscilla Tng, Igor Antoshechkin, Luke S. Alphey, Pra, The CRISPR Journal, 6:543-556. 2024.Escalating vector disease burdens pose significant global health risks, as such innovative tools for targeting mosquitoes are critical. CRISPR-Cas technologies have played a crucial role in developing powerful tools for genome manipulation in various eukaryotic organisms. ... |
|
Gene Drives: Mechanisms and Key Research, ExplainedJulia Bauman, 60 Second Science, 2024.A technical primer on CRISPR-based gene drives, which hold massive potential for mitigating the harms invoked by some species. We cover what a gene drive is, how it works at the genetic level, and summarize key safety & efficiency features developed in recent years. |
|
CRISPR engineered viruses could render other viruses harmlessMichael Le Page, New Scientist, 2023.A virus genetically engineered to spread its DNA to other viruses via CRISPR gene editing has done exactly that in tests in mice. The hope is that these viruses could alter others, such as herpes, in a way that prevents them from causing symptoms. “It’s a new technology,” ... |
|
Gene drives, mosquitoes, and ecosystems: An interdisciplinary approach to emerging ethical concernsRicardo D. Moreno, Luca Valera, Cristián Borgoño, Juan Carlos Castilla, José Luis Riveros, Frontiers in Environmental Science, 11. 2023.Gene drives are genetic elements that in sexually reproducing organisms spread faster than those transmitted through a Mendelian fashion. Since gene drives can be engineered to modify different aspects of physiology and reproduction, they have been proposed as a new and ... |
|
Advancements in Gene Editing: Using CRISPR-Cas9 and Gene Drive Technology to Neutralize VirusesAnonymous, News Directory 3, 2023.Researchers from the US Fred Hutchinson Cancer Research Center recently published research results in the international academic journal “Nature” demonstrating that herpes virus type 1 (HSV-1) was neutralized using “Gene Drive” technology . Gene drive refers to a ... |
|
CRISPR/Cas9: a cutting-edge solution for combatting the fall armyworm, Spodoptera frugiperdaGouda, M.N.R., Jeevan, H., Shashank, H.G., Molecular Biology Reports, 51. 2023.The utilization of CRISPR/Cas9 in Spodoptera frugiperda, commonly known as fall armyworm, presents a groundbreaking avenue for pest management. With its ability to precisely modify the insect’s genome, CRISPR/Cas9 offers innovative strategies to combat this destructive pest. ... |
|
Upper Bound on the Mutational Burden Imposed by a CRISPR-Cas9 Gene-Drive ElementMichael S. Overton, Sean E. Guy, Xingsen Chen, Alena Martsul, Krypton Carolino, Omar S. Akbari, Justin R. Meyer, Sergey Kryazhimskiy, bioRxiv, 2023.CRISPR-Cas9 gene drives (CCGDs) are powerful tools for genetic control of wild populations, useful for eradication of disease vectors, conservation of endangered species and other applications. However, Cas9 alone and in a complex with gRNA can cause double-stranded DNA breaks at ... |
|
Gene Drive: Engineered viruses take on their own kind in a new studyRizwan Choudhury, Interesting Engineering, 2023.Scientists are exploring a radical idea to combat viral infections: use viruses against themselves. They are testing whether introducing modified viruses into people with the same natural viruses can spread a gene that destroys the infection. This has yet to be done successfully ... |
|
Transformative Approaches for Sustainable Weed Management: The Power of Gene Drive and CRISPR-Cas9Kumam, Y.; Trick, H.N.; Vara Prasad, P.V.; Jugulam, M., Genes, 14. 2023.Weeds can negatively impact crop yields and the ecosystem’s health. While many weed management strategies have been developed and deployed, there is a greater need for the development of sustainable methods for employing integrated weed management. Gene drive systems can be ... |
|
Viruses that ‘infect’ viruses: Cas12f1 and Cas9 gene drive in HSV1Hongsheng Dai, Qiaorui Yao, Zhuangjie Lin, Keyuan Lai, Xianyin Zeng, Guangxiong Lei, Tongwen Zhang, bioRxiv, 2023.Cas9-based synthetic gene drives constitute some minimal elements capable of editing DNA with sequence specificity. However, they face high resistance rate and mitigation strategies developed so far are difficult to implement. Here, we engineered herpes simplex virus type 1 ... |
|
A population modification gene drive targeting both Saglin and Lipophorin impairs Plasmodium transmission in Anopheles mosquitoesEmily I Green, Etienne Jaouen, Dennis Klug, Roenick Proveti Olmo, Amandine Gautier, Stéphanie Blandin, Eric Marois, eLife, 12. 2023.Lipophorin is an essential, highly expressed lipid transport protein that is secreted and circulates in insect hemolymph. We hijacked the Anopheles coluzzii Lipophorin gene to make it co-express a single-chain version of antibody 2A10, which binds sporozoites of the malaria ... |
|
A homing rescue gene drive with multiplexed gRNAs reaches high frequency in cage populations but generates functional resistanceJingheng Chen, Shibo Hou, Ruobing Feng, Xuejiao Xu, Nan Liang, Jackson Champer, bioRxiv, 2023.CRISPR homing gene drive is a potent technology with considerable potential for managing populations of medically and agriculturally significant insects. It induces a bias in the inheritance of the drive allele in progeny, rapidly spreading desired genes throughout the ... |
|
Invasive Feral Cats Could Be Wiped Out Using Genetic ModificationJess Thomson, Newsweek, 2023.Hordes of feral cats terrorizing native species in Australia could be combatted using a special type of genetic engineering, scientists have suggested. The cats, which came to Australia via European colonizers, regularly kill native mammals, birds, and reptiles, including ... |
|
Manipulating the Destiny of Wild Populations Using CRISPRRaban R, Marshall JM, Hay BA, Akbari OS., Annual Reviews, 57:361-390. 2023.Genetic biocontrol aims to suppress or modify populations of species to protect public health, agriculture, and biodiversity. Advancements in genome engineering technologies have fueled a surge in research in this field, with one gene editing technology, CRISPR, leading the ... |
|
CRISPR-based gene drives generate super-Mendelian inheritance in the disease vector Culex quinquefasciatusTim Harvey-Samuel, Xuechun Feng, Emily M. Okamoto, Deepak-Kumar Purusothaman, Philip T. Leftwich, Luke Alphey & Valentino M. Gantz, Nature Communications, 14. 2023.Culex mosquitoes pose a significant public health threat as vectors for a variety of diseases including West Nile virus and lymphatic filariasis, and transmit pathogens threatening livestock, companion animals, and endangered birds. Rampant insecticide resistance makes ... |
|
Gene Drive Mosquitoes from Islamic Perspective: A Preliminary DiscussionN. M. Isa, Global Journal Al-Thaqafah, 13. 2023.Gene drive mosquitoes could spread desired trait, such as female infertility within a wild population at a rate higher than the normal inheritance rate and could eventually wipe out the population. Consequently, this makes gene drive mosquitoes one of the promising approaches in ... |
|
Generating and testing reagents for CRISPR/Cas9 based homologous recombination and gene drive in TriboliumC. M. Hannah, J. H. Kennedy, M. Megan, E. Z. Gabriel, W. Michael and Z. Andrew, bioRxiv, 2023.11.07.566100. 2023.CRISPR/Cas9 gene drive systems are possible in a few insects and ever expanding. Nonetheless, success in one species and techniques developed for it are not necessarily applicable to other species. As such, the development and expansion of gene drive systems is dependent upon ... |
|
Overriding Mendelian inheritance in Arabidopsis with a CRISPR toxin-antidote gene drive that impairs pollen germinationL. Yang, J. Bingke, C. Jackson and Q. Wenfeng, bioRxiv, 2023.10.10.561637. 2023.Synthetic gene drives, inspired by natural selfish genetic elements, present transformative potential for disseminating traits that benefit humans throughout wild populations, irrespective of potential fitness costs. Here, we constructed a gene drive system called CRISPR-Assisted ... |
|
MGDrivE 3: A decoupled vector-human framework for epidemiological simulation of mosquito genetic control tools and their surveillanceA. Mondal, C. H. M. Sanchez and J. M. Marshall, bioRxiv, 2023.09.09.556958. 2023.We present MGDrivE 3 (Mosquito Gene Drive Explorer 3), a new version of a previously-developed framework, MGDrivE 2, that investigates the spatial population dynamics of mosquito genetic control systems and their epidemiological implications. The new framework incorporates three ... |
|
Gene drive and genetic sex conversion in the global agricultural pest Ceratitis capitataA. Meccariello, S. Hou, S. Davydova, J. Fawcett, A. Siddall, P. Leftwich, T. , F. Krsticevic, P. A. Papathanos and N. Windbichler, bioRxiv, 2023.08.16.553191. 2023.Homing-based gene drives are novel interventions promising the area-wide, species-specific genetic control of harmful insect populations. Here we characterise a first set of gene drives in a tephritid agricultural pest species, the Mediterranean fruit fly Ceratitis capitata ... |
|
A migration-selection model in genetic engineeringY. Qi and L. Su, Nonlinear Analysis: Real World Applications, 75:103983. 2023.We investigate a migration-selection system arising from CRISPR-Cas9 genetic engineering, which describes the evolution of the frequencies of a wild allele O, a drive allele D, and a brake allele B. The purpose is to see whether the drive allele D can persist in the population ... |
|
Gene drives for invasive wasp control: Extinction is unlikely, with suppression dependent on dispersal and growth ratesP. J. Lester, D. O'Sullivan and G. L. W. Perry, Ecological Applications, 2023.Abstract Gene drives offer a potentially revolutionary method for pest control over large spatial extents. These genetic modifications spread deleterious variants through a population and have been proposed as methods for pest suppression or even eradication. We examined the ... |
|
CRISPR/Cas9-Based Gene Drive Could Suppress Agricultural PestsM. Kulikowski, Current Science Daily, 2023.Researchers have developed a “homing gene drive system” based on CRISPR/Cas9 that could be used to suppress populations of Drosophila suzukii vinegar flies – so-called “spotted-wing Drosophila” that devastate soft-skinned fruit in North America, Europe and parts of ... |
|
New germline Cas9 promoters show improved performance for homing gene driveD. Jie, C. Weizhe, J. Xihua, X. Xuejiao, Y. Emily, Z. Ruizhi, Z. Yuqi, M. Matt, W. M. Philipp and C. Jackson, bioRxiv, 2023.07.16.549205. 2023.Gene drive systems could be a viable strategy to prevent pathogen transmission or suppress vector populations by propagating drive alleles with super-Mendelian inheritance. CRISPR-based homing gene drives, perhaps the most powerful gene drive strategy, convert wild type alleles ... |
|
CRISPR-based gene drives generate super-Mendelian inheritance in the disease vector Culex quinquefasciatusT. Harvey-Samuel, X. Feng, E. M. Okamoto, D.-K. Purusothaman, P. T. Leftwich, L. Alphey and V. M. Gantz, bioRxiv, 2023.06.12.544656. 2023.Culex mosquitoes pose a significant public health threat as vectors for a variety of diseases including West Nile virus and lymphatic filariasis, and transmit pathogens threatening livestock, companion animals, and endangered birds. Rampant insecticide resistance makes ... |
|
CRISPR/Cas9-based split homing gene drive targeting doublesex for population suppression of the global fruit pest Drosophila suzukiiA. K. Yadav, C. Butler, A. Yamamoto, A. A. Patil, A. L. Lloyd and M. J. Scott, Proc Natl Acad Sci U S A, 120:e2301525120. 2023.Genetic-based methods offer environmentally friendly species-specific approaches for control of insect pests. One method, CRISPR homing gene drive that target genes essential for development, could provide very efficient and cost-effective control. While significant progress has ... |
|
CRISPR-mediated germline mutagenesis for genetic sterilization of Anopheles gambiae malesA. L. Smidler, D. G. Paton, G. M. Church, W. R. Shaw and F. Catteruccia, bioRxiv, 2023.06.13.544841. 2023.Rapid spread of insecticide resistance among anopheline mosquitoes threatens malaria elimination efforts, necessitating development of alternative vector control technologies. Sterile Insect Technique (SIT) has been successfully implemented in multiple insect pests to suppress ... |
|
Rapid, scalable, combinatorial genome engineering by marker-less enrichment and recombination of genetically engineered loci in yeastM. Abdullah, B. M. Greco, J. M. Laurent, R. K. Garge, D. R. Boutz, M. Vandeloo, E. M. Marcotte and A. H. Kachroo, Cell Rep Methods, 3:100464. 2023.A major challenge to rationally building multi-gene processes in yeast arises due to the combinatorics of combining all of the individual edits into the same strain. Here, we present a precise and multi-site genome editing approach that combines all edits without selection ... |
|
Anti-CRISPR Anopheles mosquitoes inhibit gene drive spread under challenging behavioural conditions in large cagesA. Simoni, R. D'Amato, C. Taxiarchi, M. Galardini, A. Trusso, R. Minuz, S. Gilli, A. Somerville, D. Shittu, A. Khalil, R. Galizi and R. Muller, Research Square, 2023.CRISPR-based gene drives have the potential to spread within a population and are considered as promising vector control tools. A doublesex-targeting gene drive was shown effective to suppress laboratory populations in both small and large cages, and it is considered for field ... |
|
Synthetic gene drives as an anthropogenic evolutionary forceA. D. Cutter, Trends in Genetics, 2023.Genetic drive represents a fundamental evolutionary force that can exact profound change to the genetic composition of populations by biasing allele transmission. Herein I propose that the use of synthetic homing gene drives, the human-mediated analog of endogenous genetic ... |
|
Identification and functional analysis of Cochliomyia hominivorax U6 gene promotersR. Novas, T. Basika, M. E. Williamson, P. Fresia, A. Menchaca and M. J. Scott, Insect Molecular Biology, 2023.The New World screwworm, Cochliomyia hominivorax, is an obligate parasite, which is a major pest of livestock. While the sterile insect technique was used very successfully to eradicate C. hominivorax from North and Central America, more cost-effective genetic methods will likely ... |
|
CRISPR-based genetic control strategies for insect pestsY. Yan, R. A. Aumann, I. Hacker and M. F. Schetelig, Journal of Integrative Agriculture, 22:651-668. 2023.Genetic control strategies such as the sterile insect technique have successfully fought insect pests worldwide. The CRISPR (clustered regularly interspaced short palindromic repeats) technology, together with high-quality genomic resources obtained in more and more species, ... |
|
A toxin-antidote CRISPR gene drive system for regional population modificationJ. Champer, E. Lee, E. Yang, C. Liu, A. G. Clark and P. W. Messer, Nature Communications, 11:1082. 2023.Engineered gene drives based on a homing mechanism could rapidly spread genetic alterations through a population. However, such drives face a major obstacle in the form of resistance against the drive. In addition, they are expected to be highly invasive. Here, we introduce the ... |
|
Simulations Reveal High Efficiency and Confinement of a Population Suppression CRISPR Toxin-Antidote Gene DriveY. Zhu and J. Champer, ACS Synthetic Biolog, 2023.Though engineered gene drives hold great promise for spreading through and suppressing populations of disease vectors or invasive species, complications such as resistance alleles and spatial population structure can prevent their success. Additionally, most forms of suppression ... |
|
Gene Drive: Past, Present and Future Roads to Vertebrate BiocontrolG. R. McFarlane, C. B. A. Whitelaw and S. G. Lillico, Applied Biosciences, 2:52-70. 2023.Scientists have long sought a technology to humanely control populations of damaging invasive pests in a species-specific manner. Gene drive technology could see this become a reality. This review charts the twists and turns on the road to developing gene drives in vertebrates. ... |
|
Genetic conversion of a split-drive into a full-drive elementG. Terradas, J. B. Bennett, Z. Li, J. M. Marshall and E. Bier, Nature Communications, 14:191. 2023.The core components of CRISPR-based gene drives, Cas9 and guide RNA (gRNA), either can be linked within a self-contained single cassette (full gene-drive, fGD) or be provided in two separate elements (split gene-drive, sGD), the latter offering greater control options. We ... |
|
Researchers Create New System for Safer Gene-Drive Testing and DevelopmentM. Aguilera, UC San Diego Today, 2023.In the journal Nature Communications, University of California San Diego researchers led by former Postdoctoral Scholar Gerard Terradas together with Postdoctoral Scholar Zhiqian Li and Professor Ethan Bier, in close collaboration with UC Berkeley graduate student Jared Bennett ... |
|
Assessment of distant-site rescue elements for CRISPR toxin-antidote gene drivesJ. Chen, X. Xu and J. Champer, bioRxiv, 2023.01.06.522951. 2023.New types of gene drives promise to provide increased flexibility, offering many options for confined modification or suppression of target populations. Among the most promising are CRISPR toxin-antidote gene drives, which disrupt essential wild-type genes by targeting them with ... |
|
The Possibilities of Gene Drives for Managing Populations and Controlling DiseasesJ. Vijay Upadhye, U. N. Shah and B. Mudhol, Salud, Ciencia y Tecnologia, 3. 2023.The technical limitations and the use of gene drives to address ecological problems by modifying all populations of wild species remain primarily speculative. Here, we examine the possibility that RNA-guided gene drives based on the CRISPR nuclease Cas9 could be used as an ... |
|
CRISPR Gene Drives: A Weapon of Mass Destruction?J. Ng, Medium, 2022.Gene drives allow scientists to “drive” new genes — and their associated traits — into wildlife populations at unprecedented rates. Here’s a simplified explanation of how gene drives work. In normal sexual reproduction between species with two copies of chromosomes, ... |
|
Genes drive organisms and slippery slopesD. B. Resnik, R. F. Medina, F. Gould, G. Church and J. Kuzma, Pathog Glob Health, 2022.The bioethical debate about using gene drives to alter or eradicate wild populations has focused mostly on issues concerning short-term risk assessment and management, governance and oversight, and public and community engagement, but has not examined big-picture- 'where is this ... |
|
Gene editing and agrifood systemsFAO, FAO, 2022.Gene-editing technologies represent a promising new tool for plant and animal breeding in low- and middle-income countries. They enhance precision and efficiency over current breeding methods and could lead to rapid development of improved plant varieties and animal breeds. ... |
|
Performance characteristics allow for confinement of a CRISPR toxin-antidote gene drive designed for population suppressionS. Zhang and J. Champer, bioRxiv, 2022.12.13.520356. 2022.Gene drives alleles that can bias their own inheritance are a promising way to engineer populations for control of disease vectors, invasive species, and agricultural pests. Recent advancements in the field have yielded successful examples of powerful suppression type drives and ... |
|
Bioinformatic and literature assessment of toxicity and allergenicity of a CRISPR-Cas9 engineered gene drive to control the human malaria mosquito vector Anopheles gambiaeA. Qureshi and J. B. Connolly, Malaria Journal, 2022.Population suppression gene drive is currently being evaluated, including via environmental risk assessment (ERA), for malaria vector control. One such gene drive involves the dsxFCRISPRh transgene encoding (i) hCas9 endonuclease, (i) T1 guide RNA (gRNA) targeting the doublesex ... |
|
A CRISPR endonuclease gene drive reveals distinct mechanisms of inheritance biasS. A. N. Verkuijl, E. Gonzalez, M. Li, J. X. D. Ang, N. P. Kandul, M. A. E. Anderson, O. S. Akbari, M. B. Bonsall and L. Alphey, Nature Communications, 13:7145. 2022.CRISPR/Cas gene drives can bias transgene inheritance through different mechanisms. Homing drives are designed to replace a wild-type allele with a copy of a drive element on the homologous chromosome. In Aedes aegypti, the sex-determining locus is closely linked to the white ... |
|
CRISPR-Mediated Cassette Exchange (CriMCE): A Method to Introduce and Isolate Precise Marker-Less EditsI. Morianou, A. Crisanti, T. Nolan and A. M. Hammond, The CRISPR Journal, 2022.The introduction of small unmarked edits to the genome of insects is essential to study the molecular underpinnings of important biological traits, such as resistance to insecticides and genetic control strategies. Advances in CRISPR genome engineering have made this possible, ... |
|
Assessing single-locus CRISPR/Cas9-based gene drive variants in the mosquito Aedes aegypti via single generation crosses and modelingW. Reid, A. E. Williams, I. Sanchez-Vargas, J. Lin, R. Juncu, K. E. Olson and A. W. E. Franz, G3 Genes|Genomes|Genetics, 2022.Critical to the design of a single-locus autonomous GD is that the selected genomic locus is amenable to both GD and appropriate expression of the antiviral effector. In our study, we used reverse engineering to target two intergenic genomic loci, which had previously shown to be ... |
|
Combating Mosquito-Borne Diseases with CRISPRN. Spahich, The Scientist, 2022.Female mosquitoes are some of the deadliest organisms in the world due to their ability to spread infectious diseases through a simple bite. Mosquito-borne diseases such as yellow fever, Zika, Dengue fever, and malaria kill millions of humans every year, and there are limited ... |
|
Fitness effects of CRISPR endonucleases in Drosophila melanogaster populationsA. M. Langmüller, J. Champer, S. Lapinska, L. Xie, M. Metzloff, S. E. Champer, J. Liu, Y. Xu, J. Du, A. G. Clark and P. W. Messer, eLife, 11:e71809. 2022.Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 provides a highly efficient and flexible genome editing technology with numerous potential applications ranging from gene therapy to population control. Some proposed applications involve the integration of ... |
|
A detailed landscape of CRISPR-Cas-mediated plant disease and pest managementS. Karmakar, P. Das, D. Panda, K. Xie, M. J. Baig and K. A. Molla, Plant Science, 323:111376. 2022.Genome editing technology has rapidly evolved to knock-out genes, create targeted genetic variation, install precise insertion/deletion and single nucleotide changes, and perform large-scale alteration. The flexible and multipurpose editing technologies have started playing a ... |
|
Genetic Tools for Integrated Management of Pests on Honeybees in the TropicsM. Pattabhiramaiah, S. Mallikarjunaiah and D. Brueckner, Genetic Methods and Tools for Managing Crop Pests, 2022.The Asian honeybee is endemic to Asia where it has been used for honey production and pollination services from time immemorial. They are integral to modern agricultural productivity and to survival and vitality of natural ecosystems. However, recent declines in populations and ... |
|
A theory of resistance to multiplexed gene drive demonstrates the significant role of weakly deleterious natural genetic variationB. S. Khatri and A. Burt, Proceedings of the National Academy of Sciences, 119:e2200567119. 2022.CRISPR-based gene drives have the potential for controlling natural populations of disease vectors, such as malaria-carrying mosquitoes in sub-Saharan Africa. If successful, they hold promise of significantly reducing the burden of disease and death from malaria and many other ... |
|
Development of CRISPR/Cas9-Mediated Gene-Drive Construct Targeting the Phenotypic Gene in Plutella xylostellaM. Asad, D. Liu, J. Li, J. Chen and G. Yang, Frontiers in Physiology, 13:938621. 2022.The gene-drive system can ensure that desirable traits are transmitted to the progeny more than the normal Mendelian segregation. The clustered regularly interspersed palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) mediated gene-drive system has been demonstrated ... |
|
CRISPR-Mediated Genome Engineering in Aedes aegyptiR. Sun, M. Li, C. J. McMeniman and O. S. Akbari, piRNA: Methods and Protocols, 2022.CRISPR-mediated genome engineering technologies have been adapted to a wide variety of organisms with high efficiency and specificity. The yellow fever mosquito, Aedes aegyptiAedes aegypti, is one such organism. It is also responsible for transmitting a wide variety of deadly ... |
|
Gene Drives: A Potentially New Weapon Against MosquitoesM. Sherman, Times Union Online, 2022.Scientists have studied gene drives for more than 50 years, and to most of us this has been a well-kept secret. The development of a powerful genome editing tool in 2012, CRISPR/Cas9,1 led to recent breakthroughs in gene drive research that built on that half century’s worth ... |
|
Active genetics comes aliveV. M. Gantz and E. Bier, BioEssays, 2022.Abstract Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-based ?active genetic? elements developed in 2015 bypassed the fundamental rules of traditional genetics. Inherited in a super-Mendelian fashion, such selfish genetic entities offered a variety of ... |
|
Investigating CRISPR/Cas9 gene drive for production of disease-preventing prion gene allelesA. R. Castle, S. Wohlgemuth, L. Arce and D. Westaway, PLoS One, 17:e0269342. 2022.Prion diseases are a group of fatal neurodegenerative disorders that includes chronic wasting disease, which affects cervids and is highly transmissible. Given that chronic wasting disease prevalence exceeds 30% in some endemic areas of North America, and that eventual ... |
|
Gene Editing and Genetic Control of Hemipteran Pests: Progress, Challenges and PerspectivesI. D. Pacheco, L. L. Walling and P. W. Atkinson, Frontiers in Bioengineering and Biotechnology, 10. 2022.The origin of the order Hemiptera can be traced to the late Permian Period more than 230 MYA, well before the origin of flowering plants 100 MY later in during the Cretaceous period. Hemipteran species consume their liquid diets using a sucking proboscis; for phytophagous ... |
|
Leveraging a natural murine meiotic drive to suppress invasive populationsL. Gierus, A. Birand, M. D. Bunting, G. I. Godahewa, S. G. Piltz, K. P. Oh, A. J. Piaggio, D. W. Threadgill, J. Godwin, O. Edwards, P. Cassey, J. V. Ross, T. A. A. Prowse and P. Q. Thomas, bioRxiv, 2022.05.31.494104. 2022.Invasive rodents, including house mice, are a major cause of environmental damage and biodiversity loss, particularly in island ecosystems. Eradication can be achieved through the distribution of rodenticide, but this approach is expensive to apply at scale, can have negative ... |
|
A nickase Cas9 gene-drive system promotes super-Mendelian inheritance in DrosophilaV. L. Del Amo, S. S. Juste and V. M. Gantz, Cell Rep, 39:110843. 2022.CRISPR-based gene-drives have been proposed for managing insect populations, including disease-transmitting mosquitoes, due to their ability to bias their inheritance toward super-Mendelian rates (>50%). Current technologies use a Cas9 that introduces DNA double-strand breaks ... |
|
Intronic gRNAs for the Construction of Minimal Gene Drive SystemsA. Nash, P. Capriotti, A. Hoermann, P. A. Papathanos and N. Windbichler, Frontiers in Bioengineering and Biotechnology, 10. 2022.Gene drives are promising tools for the genetic control of insect vector or pest populations. CRISPR-based gene drives are generally highly complex synthetic constructs consisting of multiple transgenes and their respective regulatory elements. This complicates the generation of ... |
|
Double-tap gene drive uses iterative genome targeting to help overcome resistance allelesA. L. Bishop, V. López Del Amo, E. M. Okamoto, Z. Bodai, A. C. Komor and V. M. Gantz, Nat Commun, 13:2595. 2022.Homing CRISPR gene drives could aid in curbing the spread of vector-borne diseases and controlling crop pest and invasive species populations due to an inheritance rate that surpasses Mendelian laws. However, this technology suffers from resistance alleles formed when the ... |
|
CRISPR/Cas9 mediates efficient site-specific mutagenesis of the odorant receptor co-receptor (Orco) in the malaria vector Anopheles sinensisY. Wang, X. F. He, L. Qiao, Z. R. Yu, B. Chen and Z. B. He, Pest Management Science, 11. 2022.BACKGROUND Anopheles sinensis is the most widely distributed mosquito species and is the main transmitter of Plasmodium vivax malaria in China. Most previous research has focused on the mechanistic understanding of biological processes in An. sinensis and novel ways of ... |
|
A New Approach to Develop Resistant Cultivars Against the Plant Pathogens: CRISPR DrivesM. I. Tek and K. Budak, Frontiers in Plant Science, 13. 2022.CRISPR drive is a recent and robust tool that allows durable genetic manipulation of the pest population like human disease vectors such as malaria vector mosquitos. In recent years, it has been suggested that CRISPR drives can also be used to control plant diseases, pests, and ... |
|
Biotechnological Road Map for Innovative Weed ManagementA. C. S. Wong, K. Massel, Y. Lam, J. Hintzsche and B. S. Chauhan, Frontiers in Plant Science, 13. 2022.In most agriculture farmlands, weed management is predominantly reliant on integrated weed management (IWM) strategies, such as herbicide application. However, the overuse and misuse of herbicides, coupled with the lack of novel active ingredients, has resulted in the uptrend of ... |
|
Gene drive escape from resistance depends on mechanism and ecologyF. Cook, J. J. Bull and R. Gomulkiewicz, Evolutionary Applications, 2022.Abstract Gene drives can potentially be used to suppress pest populations, and the advent of CRISPR technology has made it feasible to engineer them in many species, especially insects. What remains largely unknown for implementations is whether antidrive resistance will evolve ... |
|
Modelling homing suppression gene drive in haplodiploid organismsY. Liu and J. Champer, Proceedings of the Royal Society B: Biological Sciences, 289:20220320. 2022.Gene drives have shown great promise for suppression of pest populations.These engineered alleles can function by a variety of mechanisms, but themost common is the CRISPR homing drive, which converts wild-type allelesto drive alleles in the germline of heterozygotes. Some ... |
|
Explainer: The Gene Drive TechnologyP. Shah, CRISPR Medicine News, 2022.Gene drives are genetic elements that can quickly spread through populations and have nearly a 100% chance of passing the genes they carry to the next generation. Synthetic gene drive is a technology of genetic engineering through which certain desired traits can be introduced to ... |
|
A homing suppression gene drive with multiplexed gRNAs maintains high drive conversion efficiency and avoids functional resistance allelesE. Yang, M. Metzloff, A. M. Langmuller, X. J. Xu, A. G. Clark, P. W. Messer and J. Champer, G3-Genes Genomes Genetics, 13. 2022.Gene drives are engineered alleles that can bias inheritance in their favor, allowing them to spread throughout a population. They could potentially be used to modify or suppress pest populations, such as mosquitoes that spread diseases. CRISPR/Cas9 homing drives, which copy ... |
|
Cas9-mediated maternal-effect and derived resistance alleles in a gene-drive strain of the African malaria vector mosquito, Anopheles gambiaeR. Carballar-Lejarazú, T. Tushar, T. B. Pham and A. A. James, Genetics, 2022.CRISPR/Cas9 technologies are important tools for the development of gene-drive systems to modify mosquito vector populations to control the transmission of pathogens that cause diseases such as malaria. However, one of the challenges for current Cas9-based drive systems is their ... |
|
Expanding the flexibility of genome editing approaches for population control of the malaria mosquitoN. Kranjc, Imperial College London-PhD, 2022.Discovery and adaptation of CRISPR-Cas systems for genome editing have allowed us to gain an efficient and yet simple tool for genetic manipulation in various fields of molecular biology and biotechnology. One of the most promising applications is the use of CRISPR-Cas9 ... |
|
Toward a CRISPR-Cas9-Based Gene Drive in the Diamondback Moth Plutella xylostellaX. Xu, T. Harvey-Samuel, H. A. Siddiqui, J. X. D. Ang, M. E. Anderson, C. M. Reitmayer, E. Lovett, P. T. Leftwich, M. You and L. Alphey, The CRISPR Journal, 5:224-236. 2022.Promising to provide powerful genetic control tools, gene drives have been constructed in multiple dipteran insects, yeast, and mice for the purposes of population elimination or modification. However, it remains unclear whether these techniques can be applied to lepidopterans. ... |
|
CRISPR-mediated knockout of cardinal and cinnabar eye pigmentation genes in the western tarnished plant bugC. C. Heu, R. J. Gross, K. P. Le, D. M. LeRoy, B. Fan, J. J. Hull, C. S. Brent and J. A. Fabrick, Scientific Reports, 12. 2022.The western tarnished plant bug, Lygus hesperus, is a key hemipteran pest of numerous agricultural, horticultural, and industrial crops in the western United States and Mexico. A lack of genetic tools in L. hesperus hinders progress in functional genomics and in developing ... |
|
A homing suppression gene drive with multiplexed gRNAs maintains high drive conversion efficiency and avoids functional resistance allelesE. Yang, M. Metzloff, A. M. Langmüller, X. Xu, A. G. Clark, P. W. Messer and J. Champer, bioRxiv, 2021.05.27.446071. 2022.Gene drives are engineered alleles that can bias inheritance in their favor, allowing them to spread throughout a population. They could potentially be used to modify or suppress pest populations, such as mosquitoes that spread diseases. CRISPR/Cas9 homing drives, which copy ... |
|
Modelling homing suppression gene drive in haplodiploid organismsY. Liu and J. Champer, bioRxiv, 2021.10.12.464047. 2022.Gene drives have shown great promise for suppression of pest populations. These engineered alleles can function by a variety of mechanisms, but the most common is the CRISPR homing drive, which converts wild-type alleles to drive alleles in the germline of heterozygotes. Some ... |
|
Considerations for homology-based DNA repair in mosquitoes: Impact of sequence heterology and donor template sourceJ. X. D. Ang, K. Nevard, R. Ireland, D.-K. Purusothaman, S. A. N. Verkuijl, L. Shackleford, E. Gonzalez, M. A. E. Anderson and L. Alphey, PLOS Genetics, 18:e1010060. 2022.Author summary The field of genetic control of mosquito vectors has progressed rapidly in recent years, especially in Cas9-based control systems, due to its robustness to elicit a species-specific and dispersive control of mosquito population. To generate a Cas9-based ... |
|
Gene drives for vertebrate pest control: realistic spatial modelling of eradication probabilities and times for island mouse populationsA. Birand, P. Cassey, J. V. Ross, J. C. Russell, P. Thomas and T. A. A. Prowse, Molecular Ecology, 2022.Abstract Invasive alien species continue to threaten global biodiversity. CRISPR-based gene drives, which can theoretically spread through populations despite imparting a fitness cost, could be used to suppress or eradicate pest populations. We develop an individual-based, ... |
|
Could we delete diseases passed down through our DNA?E. Rayne, SYFY, 2022.What has now been proven possible was once the stuff of science fiction dreams. CRISPR has shown it can successfully edit out detrimental genetic conditions before they are inherited — which could mean the beginning of the end for hereditary diseases. It could also help ... |
|
Analysis of a Cas12a-based gene-drive system in budding yeastI. C. Lewis, Y. Yan and G. C. Finnigan, Access Microbiol, 3:000301. 2022.The discovery and adaptation of CRISPR/Cas systems within molecular biology has provided advances across biological research, agriculture and human health. Genomic manipulation through use of a CRISPR nuclease and programmed guide RNAs has become a common and widely accessible ... |
|
Scientists expand CRISPR-Cas9 genetic inheritance control in mammalsM. Aguilera, Phys Org, 2022.Led by graduate student Alexander Weitzel, Grunwald, Cooper and their colleagues have now succeeded in developing CRISPR-Cas9 inheritance control in male mice by shifting the gene editing window to more closely match the timing of meiosis in both sexes. Their results were ... |
|
Insect Allies – Assessment of a Viral Approach to Plant Genome EditingK. Pfeifer, J. L. Frieß and B. Giese, Integrated Environmental Assessment and Management, 2022.The DARPA program Insect Allies has already sparked scientific debate concerning technology assessment-related issues, among which the most prevalent is that of dual use potential. As apart from the issues concerning peaceful applications, the technology also provides the ... |
|
Reversing insecticide resistance with allelic-drive in Drosophila melanogasterB. Kaduskar, R. B. S. Kushwah, A. Auradkar, A. Guichard, M. Li, J. B. Bennett, A. H. F. Julio, J. M. Marshall, C. Montell and E. Bier, Nature Communications, 13:291. 2022.A recurring target-site mutation identified in various pests and disease vectors alters the voltage gated sodium channel (vgsc) gene (often referred to as knockdown resistance or kdr) to confer resistance to commonly used insecticides, pyrethroids and DDT. The ubiquity of kdr ... |
|
Meiotic Cas9 expression mediates gene conversion in the male and female mouse germlineA. J. Weitzel, H. A. Grunwald, C. Weber, R. Levina, V. M. Gantz, S. M. Hedrick, E. Bier and K. L. Cooper, PLOS Biology, 19:e3001478. 2021.Highly efficient gene conversion systems have the potential to facilitate the study of complex genetic traits using laboratory mice and, if implemented as a “gene drive,” to limit loss of biodiversity and disease transmission caused by wild rodent populations. We previously ... |
|
Scientists Used CRISPR Gene Editing to Choose the Sex of Mouse PupsS. Fan, Singuarity Hub, 2021.“Do you want a boy or a girl?” can be an awkward question.But in certain circles, it’s a question that’s asked every day. Take agriculture. In a perfect world, most cows would only birth females. Chicks would grow up to be all hens. “Sexing” a farm animal when ... |
|
Exploiting a Y chromosome-linked Cas9 for sex selection and gene driveS. Gamez, D. Chaverra-Rodriguez, A. Buchman, N. P. Kandul, S. C. Mendez-Sanchez, J. B. Bennett, C. H. Sánchez, T. Yang, I. Antoshechkin, J. E. Duque, P. A. Papathanos, J. M. Marshall and O. S. Akbari, Nature Communications, 7202. 2021.CRISPR-based genetic engineering tools aimed to bias sex ratios, or drive effector genes into animal populations, often integrate the transgenes into autosomal chromosomes. However, in species with heterogametic sex chromsomes (e.g. XY, ZW), sex linkage of endonucleases could be ... |
|
Genomic insertion locus and Cas9 expression in the germline affect CRISPR/Cas9-based gene drive performance in the yellow fever mosquito Aedes aegyptiW. R. Reid, J. Lin, A. E. Williams, R. Juncu, K. E. Olson and A. W. E. Franz, bioRxiv, 2021.12.08.471839. 2021.The yellow fever mosquito Aedes aegypti is a major vector of arthropod-borne viruses, including dengue, chikungunya, and Zika. A novel approach to mitigate arboviral infections is to generate mosquitoes refractory to infection by overexpressing antiviral effector molecules. Such ... |
|
Gene editing used to create all-male or all-female litters of miceJ. Goodyer, Science Focus, 2021.As males are unable to produce milk or lay eggs, the ability to breed cows and hens that produce all-female litters is likely to be high on most poultry and dairy farmers’ wish lists. Now, scientists at the Francis Crick Institute and the University of Kent have come a step ... |
|
Genetic conversion of a split-drive into a full-drive elementG. Terradas, J. B. Bennett, Z. Li, J. M. Marshall and E. Bier, bioRxiv, 2021.12.05.471291. 2021.Gene-drive systems offer an important new avenue for spreading beneficial traits into wild populations. Their core components, Cas9 and guide RNA (gRNA), can either be linked within a single cassette (full gene drive, fGD) or provided in two separate elements (split gene drive, ... |
|
Gene editing used to create all-male or all-female mice littersA. Reis, European Scientist, 2021.Researchers from the Francis Crick Institute and the University of Kent used gene-editing technologies to create male-only and female-only mice litters, according to a study published in Nature Communications (1). The authors also suggested ways in which this method could be used ... |
|
Gene-editing used to create single sex mice littersThe Francis Crick Institute, Phys Org, 2021.Scientists at the Francis Crick Institute, in collaboration with University of Kent, have used gene editing technology to create female-only and male-only mice litters with 100% efficiency. This proof of principle study, published in Nature Communications today, demonstrates how ... |
|
Single-sex mice litters were created with 100% efficiency using gene editing.R. Silman, Brinkwire, 2021.The Francis Crick Institute, in partnership with the University of Kent, has employed gene editing technology to construct 100% efficient female-only and male-only mouse litters. This proof-of-concept study, which was published today (Friday, December 3rd, 2021) in Nature ... |
|
Lab animals: Gene-editing technology is used to create female-only and male-only mice litterstodayuknews, Today UK News, 2021.Single-sex litters of mice — comprising only either female or male pups — have been produced by means of so-called CRISPR-Cas9 gene editing technology. The technique, developed by experts at the Francis Crick Institute and the University of Kent, works by inactivating embryos ... |
|
Gene editing produces all-male or all-female litters of miceE. Pennisi, Science, 2021.In some farmers’ ideal world, cows would birth only females, sows would bear no boars, and chicks would all grow up to be hens. Such sex ratios would stop them from killing millions of male animals, which don’t produce eggs or milk. Now, scientists are a step closer to this ... |
|
CRISPR-Cas9 effectors facilitate generation of single-sex litters and sex-specific phenotypesC. Douglas, V. Maciulyte, J. Zohren, D. M. Snell, S. K. Mahadevaiah, O. A. Ojarikre, P. J. I. Ellis and J. M. A. Turner, Nature Communications, 12:6926. 2021.Animals are essential genetic tools in scientific research and global resources in agriculture. In both arenas, a single sex is often required in surplus. The ethical and financial burden of producing and culling animals of the undesired sex is considerable. Using the mouse as a ... |
|
CRISPR gene-drive systems based on Cas9 nickases promote super-Mendelian inheritance in DrosophilaV. Lopez del Amo, S. Sanz Juste and V. M. Gantz, bioRxiv, 2021.12.01.470847. 2021.CRISPR-based gene drive systems can be used to modify entire wild populations due to their ability to bias their own inheritance towards super-Mendelian rates (>100%). Current gene drives contain a Cas9 and a gRNA gene inserted at the location targeted by the gRNA. These ... |
|
Applying functional genomics to the study of lamprey development and sea lamprey population controlJ. R. York, R. E. Thresher and D. W. McCauley, Journal of Great Lakes Research, 47:S639-S649. 2021.Lampreys are one of the few survivors of an ancient lineage of jawless vertebrates and have become an important study organism in numerous disciplines in the biological sciences, including evolutionary biology, embryology, ecology, physiology and biomedicine. At the same time, ... |
|
Genome editing and its applications for insect pest control: Curse or blessing?Hacker, I. , and Schetelig, M. F, AREA-WIDE INTEGRATED PEST MANAGEMENT: Development and Field Application, 2021.Gene and genome editing are described as cutting-edge research tools with the potential to tackle urgent global challenges in the management of agricultural pests and human disease vectors such as mosquitoes. The field is defined by the chances and challenges to interlink the ... |
|
High-resolution in situ analysis of Cas9 germline transcript distributions in gene-drive Anopheles mosquitoesG. Terradas, A. Hermann, A. A. James, W. McGinnis and E. Bier, G3-Genes Genomes Genetics, 2021.Gene drives are programmable genetic elements that can spread beneficial traits into wild populations to aid in vector-borne pathogen control. Two different drives have been developed for population modification of mosquito vectors. The Reckh drive (vasa-Cas9) in Anopheles ... |
|
Temperature-Inducible Precision-Guided Sterile Insect TechniqueN. P. Kandul, J. R. Liu and O. S. Akbari, CRISPR Journal, 14. 2021.Releases of sterile males are the gold standard for many insect population control programs, and precise sex sorting to remove females prior to male releases is essential to the success of these operations. To advance traditional methods for scaling the generation of sterile ... |
|
Modeling the efficacy of CRISPR gene drive for schistosomiasis controlR. E. Grewelle, J. Perez-Saez, J. Tycko, E. K. O. Namigai, C. G. Rickards and G. A. De Leo, bioRxiv, 2021.10.29.466423. 2021.CRISPR gene drives could revolutionize the control of infectious diseases by accelerating the spread of engineered traits that limit parasite transmission in wild populations. While much effort has been spent developing gene drives in mosquitoes, gene drive technology in molluscs ... |
|
Genome Editing Tools and Gene Drives: A Brief Overview (1st ed.).R. Mudziwapasi, R. Chekera, C. Z. Ncube, I. Shoko, B. Ncube, T. Moyo, J. G. Chimbo, J. Dube, F. F. Mashiri, M. A. Mubani, D. Maruta, C. Chimbo, M. Masuku, R. Shoko, R. P. Nyamusamba and F. N. Jomane, CRC Press, 2021.Genome-editing methods are becoming routine tools for molecular and cell biologists. Such tools include ZFNs, CRISPR, megaTALs and TALENs. These tools are revolutionizing the creation of precisely manipulated genomes to modify the characteristics of organisms or cells. ... |
|
Modeling homing suppression gene drive in haplodiploid organismsY. Liu and J. Champer, bioRxiv, 2021.10.12.464047. 2021.Gene drives have shown great promise for suppression of pest populations. These engineered alleles can function by a variety of mechanisms, but the most common is the CRISPR homing drive, which converts wild-type alleles to drive alleles in the germline of heterozygotes. Some ... |
|
Gene drive: a faster route to plant improvementH. A. Siddiqui, T. Harvey-Samuel and S. Mansoor, Trends in Plant Science, 2021.Gene drives for control of vector-borne diseases have been demonstrated in insects but remain challenging in plants. Theoretically, they could be transformative in speeding breeding programs and contributing to food security through providing novel weed control methods. Zhang et ... |
|
Towards CRISPR/Cas9-based gene drive in the diamondback moth Plutella xylostellaX. Xu, T. Harvey-Samuel, H. Siddiqui, J. Ang, M. A. E. Anderson, C. Reitmayer, E. Lovett, P. T. Leftwich, M. You and L. Alphey, bioRxiv, 2021.10.05.462963. 2021.Promising to provide powerful genetic control tools, gene drives have been constructed in multiple dipterans, yeast and mice, for the purposes of population elimination or modification. However, it remains unclear whether these techniques can be applied to lepidopterans. Here, we ... |
|
Resistance to a CRISPR-based gene drive at an evolutionarily conserved site is revealed by mimicking genotype fixationS. Fuchs, W. T. Garrood, A. Beber, A. Hammond, R. Galizi, M. Gribble, G. Morselli, T.-Y. J. Hui, K. Willis, N. Kranjc, A. Burt, A. Crisanti and T. Nolan, PLOS Genetics, 17. 2021.Author summary Gene drives have the potential to be applied as a novel control strategy of disease-transmitting mosquitoes, by spreading genetic traits that suppress or modify the target population. Many gene drive elements work by recognising and cutting a specific target ... |
|
Scientists use gene editing tool to target mosquito-spread diseaseMedical Research Council, Phys Org, 2021.Advances in genome editing have allowed the development of genetic insect control methods, which could be highly effective and are species-specific. The results have been published in Scientific Reports. Scientists showed that a method involving a gene editing tool called ... |
|
Mosquitoes Sterilized by CRISPR Powered Precision SystemA. A. Sarkar, Genetic Engineering & Biotechnology News, 2021.Each year millions around the world are infected by dengue, chikungunya, and Zika viruses. The principal culprit behind the transmission of these deadly diseases is the mosquito vector, Aedes aegypti. Conventional methods of pest control have so far fallen short. To curb the ... |
|
New precision-guided sterile insect technique designed to control disease-spreading mosquitoesE. Henderson, News Medical Life Sciences, 2021.Leveraging advancements in CRISPR-based genetic engineering, researchers at the University of California San Diego have created a new system that restrains populations of mosquitoes that infect millions each year with debilitating diseases. The new precision-guided sterile ... |
|
Genetic engineering tech promises to sterilize disease-spreading mosquitoesB. Hays, UPI, 2021.Inspired by improvements in CRISPR-based genetic engineering, scientists have developed a more precise insect sterilization system to curtail, or even eliminate, disease-spreading Aedes aegypti mosquito populations. The so-called "precision-guided sterile insect technique," or ... |
|
Genetic Engineering Technology Promises To Sterilize Disease-Spreading Mosquito PopulationsD. Gyllhem, VIGOURTIMES, 2021.Inspired by improvements in CRISPR-based genetic engineering, scientists have developed a more precise insect sterilization system to curtail, or even eliminate, disease-spreading Aedes aegypti mosquito populations. The so-called “precision-guided sterile insect technique,” ... |
|
New Technology Designed to Genetically Control Disease-spreading MosquitoesM. Aguilera, UC San Diego News Center, 2021.Leveraging advancements in CRISPR-based genetic engineering, researchers at the University of California San Diego have created a new system that restrains populations of mosquitoes that infect millions each year with debilitating diseases. An illustration by study coauthor ... |
|
Suppressing mosquito populations with precision guided sterile malesM. Li, T. Yang, M. Bui, S. Gamez, T. Wise, N. P. Kandul, J. Liu, L. Alcantara, H. Lee, J. R. Edula, R. Raban, Y. Zhan, Y. Wang, N. DeBeaubien, J. Chen, H. M. Sánchez C, J. B. Bennett, I. Antoshechkin, C. Montell, J. M. Marshall and O. S. Akbari, Nature Communications, 12:5374. 2021.The mosquito Aedes aegypti is the principal vector for arboviruses including dengue/yellow fever, chikungunya, and Zika virus, infecting hundreds of millions of people annually. Unfortunately, traditional control methodologies are insufficient, so innovative control methods are ... |
|
Gene drive escape from resistance depends on mechanism and ecologyF. Cook, J. J. Bull and R. Gomulkiewicz, bioRxiv, 2021.08.30.458221. 2021.Gene drives can potentially be used to suppress pest populations, and the advent of CRISPR technology has made it feasible to engineer them in many species, especially insects. What remains largely unknown for implementations is whether anti-drive resistance will evolve to block ... |
|
Versatile Applications of the CRISPR/Cas Toolkit in Plant Pathology and Disease ManagementM. S. Wheatley and Y. N. Yang, Phytopathology, 111:1080-1090. 2021.New tools and advanced technologies have played key roles in facilitating basic research in plant pathology and practical approaches for disease management and crop health. Recently. the CRISPR/Cas (clustered regularly interspersed short palindromic repeats/CRISPR-associated) ... |
|
Cas9-Mediated Gene-Editing in the Black-Legged Tick, Ixodes Scapularis, by Embryo Injection and ReMOT Control.A. a. P. Sharma, Michael N. and Reyes, Jeremiah B. and Chana, Randeep and Yim, Won C. and Heu, Chan C. and Kim, Donghun and Chaverra-Rodriguez, Duverney and Rasgon, Jason L. and Harrell, Robert A. and Nuss, Andrew B. and Gulia-Nuss, Monika,, Cell Reports, 2021.Despite their capacity to acquire and pass on an array of debilitating pathogens, research on ticks has lagged behind other arthropod vectors, such as mosquitoes, largely because of a lack of genetic and molecular tools. CRISPR-Cas9 is transforming non-model organism research; ... |
|
CRISPR/Cas9-based functional characterization of the pigmentation gene ebony in Plutella xylostellaX. Xu, T. Harvey-Samuel, J. Yang, M. You and L. Alphey, Insect Molecular Biology, 2021.Abstract Body pigmentation is an important character of insects in adapting to biotic and abiotic environmental challenges. Additionally, based on the relative ease of screening, several genes involved in insect melanisation have been used in classic genetic studies or as visual ... |
|
Gene drives gaining speedE. Bier, Nature Reviews Genetics, 2021.Gene drives are selfish genetic elements that are transmitted to progeny at super-Mendelian (>50%) frequencies. Recently developed CRISPR–Cas9-based gene-drive systems are highly efficient in laboratory settings, offering the potential to reduce the prevalence of vector-borne ... |
|
The Promise of Genetics and Genomics for Improving Invasive Mammal Management on IslandsB. T. Burgess, R. L. Irvine, G. R. Howald and M. A. Russello, Frontiers in Ecology and Evolution, 9. 2021.Invasive species are major contributors to global biodiversity decline. Invasive mammalian species (IMS), in particular, have profound negative effects in island systems that contain disproportionally high levels of species richness and endemism. The eradication and control of ... |
|
Resistance to a CRISPR-based gene drive at an evolutionarily conserved site is revealed by mimicking genotype fixationS. Fuchs, W. Garrood, A. Beber, A. Hammond, R. Galizi, M. Gribble, G. Morselli, T.-Y. Hui, K. Willis, N. Kranjc, A. Burt, T. Nolan and A. Crisanti, bioRxiv, 2021.CRISPR-based homing gene drives can be designed to disrupt essential genes whilst biasing their own inheritance, leading to suppression of mosquito populations in the laboratory. This class of gene drives relies on CRISPR-Cas9 cleavage of a target sequence and copying ... |
|
CRISPR/Cas-9 mediated knock-in by homology dependent repair in the West Nile Virus vector Culex quinquefasciatus SayD.-K. Purusothaman, L. Shackleford, M. A. E. Anderson, T. Harvey-Samuel and L. Alphey, Scientific Reports, 11:14964. 2021.Culex quinquefasciatus Say is a mosquito distributed in both tropical and subtropical regions of the world. It is a night-active, opportunistic blood-feeder and vectors many animal and human diseases, including West Nile Virus and avian malaria. Current vector control methods ... |
|
A Sterile Solution: How Crispr Could Protect Wild SalmonL. Abend, UNDARK, 2021.In an attempt to prevent escaped fish from interbreeding with their wild counterparts and threatening the latter’s genetic diversity, molecular biologist Anna Wargelius and her team at the Institute of Marine Research in Norway have spent years working on ways to induce ... |
|
Scientists develop new technology that gives greater control for managing malaria mosquitoesKeele University, Phy Org, 2021.Researchers including a Keele University scientist have engineered an innovative approach to disable highly powerful genetic devices that control harmful insect populations. Dr. Roberto Galizi from Keele's School of Life Sciences was part of a research team that previously ... |
|
A genetically encoded anti-CRISPR protein constrains gene drive spread and prevents population suppressionC. Taxiarchi, A. Beaghton, N. I. Don, K. Kyrou, M. Gribble, D. Shittu, S. P. Collins, C. L. Beisel, R. Galizi and A. Crisanti, Nature Communications, 12:3977. 2021.CRISPR-based gene drives offer promising means to reduce the burden of pests and vector-borne diseases. These techniques consist of releasing genetically modified organisms carrying CRISPR-Cas nucleases designed to bias their inheritance and rapidly propagate desired ... |
|
UC San Diego scientists develop the first CRISPR/Cas9-based gene drive in plantsM. Aguilera, UC San Diego News Center, 2021.With a goal of breeding resilient crops that are better able to withstand drought and disease, University of California San Diego scientists have developed the first CRISPR-Cas9-based gene drive in plants. While gene drive technology has been developed in insects to help stop the ... |
|
Using gene drives to control malariaA. Fell, Daily News, 2021.A group of UC scientists led by Greg Lanzaro, professor of pathology, microbiology and immunology in the UC Davis School of Veterinary Medicine, recently completed an analysis of a strategy aimed at eliminating malaria from Africa using genetically engineered mosquitoes. ... |
|
Selective inheritance of target genes from only one parent of sexually reproduced F1 progeny in ArabidopsisT. Zhang, M. Mudgett, R. Rambabu, B. Abramson, X. Dai, T. P. Michael and Y. Zhao, Nature Communications, 12:3854. 2021.Sexual reproduction constrains progeny to inherit allelic genes from both parents. Selective acquisition of target genes from only one parent in the F1 generation of plants has many potential applications including the elimination of undesired alleles and acceleration of trait ... |
|
Sustainable Food Production: The Contribution of Genome Editing in LivestockA. Menchaca, Sustainability, 13. 2021.This article is focused on the scope and perspectives for the application of this technology, which includes improving production traits, enhancing animal welfare through adaptation and resilience, conferring resistance to infectious diseases, and suppressing pests and invasive ... |
|
Population modification strategies for malaria vector control are uniquely resilient to observed levels of gene drive resistance allelesG. C. Lanzaro, H. M. Sánchez C, T. C. Collier, J. M. Marshall and A. A. James, BioEssays, 2021.Cas9/guide RNA (gRNA)-based gene drive systems are expected to play a transformative role in malaria elimination efforts., whether through population modification, in which the drive system contains parasite-refractory genes, or population suppression, in which the drive system ... |
|
ReMOT Control Delivery of CRISPR-Cas9 Ribonucleoprotein Complex to Induce Germline Mutagenesis in the Disease Vector Mosquitoes Culex pipiens pallens (Diptera: Culicidae)X. X. Li, Y. Xu, H. B. Zhang, H. T. Yin, D. Zhou, Y. Sun, L. Ma, B. Shen and C. L. Zhu, Journal of Medical Entomology, 58:1202-1209. 2021.The wide distribution of Culex (Cx.) pipiens complex mosquitoes makes it difficult to prevent the transmission of mosquito-borne diseases in humans. Gene editing using CRISPR/Cas9 is an effective technique with the potential to solve the growing problem of mosquito-borne ... |
|
Temperature-Inducible Precision Guided Sterile Insect TechniqueN. P. Kandul, J. Liu and O. S. Akbari, bioRxiv, 2021.06.14.448312. 2021.Releases of sterile males are the gold standard for many insect population control programs, and precise sex sorting to remove females prior to male releases is essential to the success of these operations. To advance traditional methods for scaling the generation of sterile ... |
|
New CRISPR Tools Can Help Contain Mosquito Disease TransmissionAnonymous, labcompare, 2021.Scientists have now developed several genetic editing tools that help pave the way to an eventual gene drive designed to stop Culex mosquitoes from spreading disease. As detailed in the journal Nature Communications, Xuechun Feng, Valentino Gantz and their colleagues at Harvard ... |
|
Analysis of off-target effects in CRISPR-based gene drives in the human malaria mosquitoW. T. Garrood, N. Kranjc, K. Petri, D. Y. Kim, J. A. Guo, A. M. Hammond, I. Morianou, V. Pattanayak, J. K. Joung, A. Crisanti and A. Simoni, Proceedings of the National Academy of Sciences, 118:e2004838117. 2021.CRISPR-Cas9 nuclease-based gene drives have been developed toward the aim of control of the human malaria vector Anopheles gambiae. Gene drives are based on an active source of Cas9 nuclease in the germline that promotes super-Mendelian inheritance of the transgene by ... |
|
Researchers Create New CRISPR Tools to Help Contain Mosquito Disease TransmissionM. Aguilera, UC San Diego News Center, 2021.Much less genetic engineering has been devoted to Culex genus mosquitoes, which spread devastating afflictions stemming from West Nile virus—the leading cause of mosquito-borne disease in the continental United States—as well as other viruses such as the Japanese encephalitis ... |
|
New CRISPR tools help contain mosquito disease transmission: Genetics toolkit targets less researched Culex mosquitoes, which transmit West Nile virus and avian malaria.University of California - San Diego, ScienceDaily, 2021.Since the onset of the CRISPR genetic editing revolution, scientists have been working to leverage the technology in the development of gene drives that target pathogen-spreading mosquitoes such as Anopheles and Aedes species, which spread malaria, dengue and other ... |
|
Suppression of female fertility in Aedes aegypti with a CRISPR-targeted male-sterile mutationJieyan Chen, Junjie Luo, Yijin Wang, et al, Proceedings of the National Academy of Sciences, 118. 2021.Aedes aegypti spread devastating viruses such as dengue, which causes disease among 100 to 400 million people annually. A potential approach to control mosquito disease vectors is the sterile insect technique (SIT). The strategy involves repeated release of large numbers of ... |
|
Optimized CRISPR tools and site-directed transgenesis towards gene drive development in Culex quinquefasciatus mosquitoesX. Feng, V. López Del Amo, E. Mameli, M. Lee, A. L. Bishop, N. Perrimon and V. M. Gantz, Nature Communications, 12:2960. 2021.Culex mosquitoes are a global vector for multiple human and animal diseases, including West Nile virus, lymphatic filariasis, and avian malaria, posing a constant threat to public health, livestock, companion animals, and endangered birds. While rising insecticide resistance has ... |
|
Targeting conserved sequences circumvents the evolution of resistance in a viral gene drive against human cytomegalovirusM. Walter, R. Perrone and E. Verdin, Journal of virology, 2021.Here, we analyze in cell culture experiments the evolution of resistance in a viral gene drive against human cytomegalovirus. We report that, after an initial invasion of the wildtype population, a drive-resistant population is positively selected over time and outcompetes gene ... |
|
Genetic Technologies for Sustainable Management of Insect Pests and Disease VectorsS. Grilli, R. Galizi and C. Taxiarchi, Sustainability, 13. 2021.Recent advancements in genetic and genome editing research, augmented by the discovery of new molecular tools such as CRISPR, have revolutionised the field of genetic engineering by enabling precise site-specific genome modifications with unprecedented ease. These technologies ... |
|
Genetic Manipulation of Ticks: A Paradigm Shift in Tick and Tick-Borne Diseases ResearchA. Nuss, A. Sharma and M. Gulia-Nuss, Frontiers in Cellular and Infection Microbiology, 11:7. 2021.Ticks are obligate hematophagous arthropods that are distributed worldwide and are one of the most important vectors of pathogens affecting humans and animals. Despite the growing burden of tick-borne diseases, research on ticks has lagged behind other arthropod vectors, such as ... |
|
Converting endogenous genes of the malaria mosquito into simple non-autonomous gene drives for population replacementA. Hoermann, S. Tapanelli, P. Capriotti, G. Del Corsano, E. K. G. Masters, T. Habtewold, G. K. Christophides and N. Windbichler, eLife, 10. 2021.Gene drives for mosquito population replacement are promising tools for malaria control. However, there is currently no clear pathway for safely testing such tools in endemic countries. The lack of well-characterized promoters for infection-relevant tissues and regulatory hurdles ... |
|
Systematic identification of plausible pathways to potential harm via problem formulation for investigational releases of a population suppression gene drive to control the human malaria vector Anopheles gambiae in West AfricaJ. B. Connolly, J. D. Mumford, S. Fuchs, G. Turner, C. Beech, A. R. North and A. Burt, Malaria Journal, 20:170. 2021.Population suppression gene drive has been proposed as a strategy for malaria vector control. A CRISPR-Cas9-based transgene homing at the doublesex locus (dsxFCRISPRh) has recently been shown to increase rapidly in frequency in, and suppress, caged laboratory populations of the ... |
|
Driving to Safety: CRISPR-Based Genetic Approaches to Reducing Antibiotic ResistanceE. Bier and V. Nizet, Trends in Genetics, 2021.The complex and challenging problem of reducing antibiotic resistance (AR) requires a network of both societal and science-based solutions to preserve the most lifesaving pharmaceutical intervention known to medicine. In addition to developing new classes of antibiotics, it is ... |
|
Ultra-conserved sequences in the genomes of highly diverse Anopheles mosquitoes, with implications for malaria vector controlS. M. O'Loughlin, A. J. Forster, S. Fuchs, T. Dottorini, T. Nolan, A. Crisanti and A. Burt, G3-Genes Genomes Genetics, 2021.Here we search for conserved sequences of 18bp and over in an alignment of 21 Anopheles genomes, spanning an evolutionary timescale of 100 million years, and characterise the resulting sequences according to their location and function. Over 8000 ultra-conserved elements were ... |
|
Meiotic Cas9 expression mediates genotype conversion in the male and female mouse germline.A. J. Weitzel, H. A. Grunwald, R. Levina, V. M. Gantz, S. M. Hedrick, E. Bier and K. L. Cooper, 2021.03.16.435716, 2021.We previously showed that such a system of genotype conversion from heterozygous to homozygous after a sequence targeted CRISPR/Cas9 double strand DNA break is feasible in the female mouse germline. In the male germline, however, all double strand breaks were instead repaired by ... |
|
Evading resistance to gene drivesR. Gomulkiewicz, M. L. Thies and J. J. Bull, Genetics, 217. 2021.Here, we develop mathematical and computational models to identify conditions under which suppression drives will evade resistance, even if resistance is present initially. Previous models assumed resistance is allelic to the drive. We relax this assumption and show that linkage ... |
|
Genetically Encoded CRISPR components Yield Efficient Gene Editing in the Invasive Pest, Drosophila suzukiiN. P. Kandul, E. J. Belikoff, J. Liu, A. Buchman, F. Li, A. Yamamoto, T. Yang, I. Shriner, M. J. Scott and O. Akbari, bioRxiv, 2021.03.15.435483. 2021.Here we have developed transgenic strains that encode three different terminators and four different promoters to express Cas9 in both the soma and/or germline of SWD. The Cas9 lines were evaluated through genetic crossing to transgenic lines that encode single guide RNAs ... |
|
Gene Drives Built to Follow More Stringent Rules of the RoadAnonymous, Genetic Engineering & Biotechnology News, 2021.Gene drives, or systems that accelerate the spread of desirable genetic traits into a population, may be built to achieve specific levels of spread when released into the wild. By exerting control over the degree of spread, those who unleash gene drives may realize the benefits ... |
|
New gene-drive technologies can help control crop pestsAnonymous, AZO Life Sciences, 2021.The supposed gene drives, which exploit CRISPR technology to affect genetic inheritance, show the potential to quickly spread particular genetic traits across the populations of a specified species. For instance, gene-drive technologies used on insects are being developed to stop ... |
|
New ‘Split-drive’ System Puts Scientists in the (Gene) Driver SeatM. Aguilera, UC San Diego News Center, 2021.Gene-drive technologies applied in insects, for example, are being designed to halt the spread of devastating diseases such as malaria and dengue by preventing mosquito hosts from becoming infected. In agricultural fields, gene-drives are being developed to help control or ... |
|
A confinable home and rescue gene drive for population modificationN. P. Kandul, J. Liu, J. B. Bennett, J. M. Marshall and O. S. Akbari, eLife, 10:e65939. 2021.Homing based gene drives, engineered using CRISPR/Cas9, have been proposed to spread desirable genes throughout populations. However, invasion of such drives can be hindered by the accumulation of resistant alleles. To limit this obstacle, we engineer a confinable population ... |
|
Developing GDi-CRISPR System for Multi-copy Integration in Saccharomyces cerevisiaeZ.-X. Zhang, Y.-Z. Wang, Y.-S. Xu, X.-M. Sun and H. Huang, Applied Biochemistry and Biotechnology, 2021.This study aims to develop a low-cost and easy-to-use multi-copy integration tool in S. cerevisiae. Firstly, twenty-one Cas proteins from different microorganisms were tested in S. cerevisiae to find the functional Cas proteins with optimal cleavage ability. Results showed that ... |
|
Designing gene drives to limit spillover to non-target populationsG. Greenbaum, M. W. Feldman, N. A. Rosenberg and J. Kim, PLOS Genetics, 17:e1009278. 2021.We develop mathematical models of gene-drive dynamics that incorporate migration between a target and non-target populations to investigate the possibility of effectively applying a gene drive in the target population while limiting its spillovers to the non-target population ... |
|
Population genomics of invasive rodents on islands: Genetic consequences of colonization and prospects for localized synthetic gene driveK. P. Oh, A. B. Shiels, L. Shiels, D. V. Blondel, K. J. Campbell, J. R. Saah, A. L. Lloyd, P. Q. Thomas, F. Gould, Z. Abdo, J. R. Godwin and A. J. Piaggio, Evolutionary Applications, 2021.Here we used pooled whole-genome sequencing of invasive mouse (Mus musculus) populations on four islands along with paired putative source populations to test genetic predictions of island colonization and characterize locally fixed Cas9 genomic targets. Patterns of variation ... |
|
Split versions of Cleave and Rescue selfish genetic elements for measured self limiting gene driveG. Oberhofer, T. Ivy and B. A. Hay, PLoS genetics, 17:e1009385. 2021.Self-sustaining Cleave and Rescue (ClvR) elements include a DNA sequence-modifying enzyme such as Cas9/gRNAs that disrupts endogenous versions of an essential gene, a tightly linked recoded version of the essential gene resistant to cleavage (the Rescue), and a Cargo. ClvR ... |
|
Emergent challenges for CRISPR: biosafety, biosecurity, patenting, and regulatory issuesBraddick, D. , and Ramarohetra, R. F., Genome Engineering Via Crispr-Cas9 System, 2021.The recent advancements of CRISPR-Cas technologies have transformed this simple and efficient gene editing technique into an extraordinarily powerful tool. The most anticipated applications could create novel therapeutics against mankind's most serious afflictions and help ... |
|
Scientifically framed gene drive communication perceived as credible but riskierE. A. MacDonald, E. D. Edwards, J. Balanovic and F. Medvecky, People and Nature, 2021.Framing is a communication technique in which certain beliefs or values are emphasized that resonate with the target audience. Framing may increase how much people objectively think about new information and update their opinions; framing may mitigate emo |
|
ReMOT Control Delivery of CRISPR-Cas9 Ribonucleoprotein Complex to Induce Germline Mutagenesis in the Disease Vector Mosquitoes Culex pipiens pallens (Diptera: Culicidae)X. X. Li, Y. Xu, H. B. Zhang, H. T. Yin, D. Zhou, Y. Sun, L. Ma, B. Shen and C. L. Zhu, Journal of Medical Entomology, 58. 2021.The wide distribution of Culex (Cx.) pipiens complex mosquitoes makes it difficult to prevent the transmission of mosquito-borne diseases in humans. Gene editing using CRISPR/Cas9 is an effective technique with the potential to solve the growing problem of mosquito-borne ... |
|
Optimized CRISPR tools and site-directed transgenesis in Culex quinquefasciatus mosquitoes for gene drive developmentX. Feng, V. Lopez Del Amo, E. Mameli, M. Lee, A. L. Bishop, N. Perrimon and V. M. Gantz, bioRxiv, 2021.02.10.430702. 2021.Here, we developed a Culex-specific Cas9/gRNA expression toolkit and used site-directed homology-based transgenesis to generate and validate a Culex quinquefasciatus Cas9-expressing line. We showed that gRNA scaffold variants improve transgenesis efficiency in both Culex and ... |
|
A Code of Ethics for Gene Drive ResearchG. J. Annas, C. L. Beisel, K. Clement, A. Crisanti, S. Francis, M. Galardini, R. Galizi, J. Grünewald, G. Immobile, A. S. Khalil, R. Müller, V. Pattanayak, K. Petri, L. Paul, L. Pinello, A. Simoni, C. Taxiarchi and J. K. Joung, The CRISPR Journal, 2021.A code of ethics can be a useful tool for all parties involved in the development and regulation of gene drives and can be used to help ensure that a balanced analysis of risks, benefits, and values is taken into consideration for the interest of society and humanity. We have ... |
|
Assisting Evolution: How Far Should We Go to Help Species Adapt?E. Kolbert, YaleEnvironment360, 2021.It was a hot, intensely blue day in the Australian Outback, about 350 miles north of Adelaide. I was tagging along with Moseby as she checked the batteries on the motion-sensitive cameras that dot Arid Recovery, an ecosystem restoration project she and her husband launched in ... |
|
Should we dim the sun? Will we even have a choiceE. Klein, New York Times, 2021.“Under a White Sky” is going to be on my best books of 2021 list. It’s a wonderful work. Kolbert is the Pulitzer Prize-winning author of “The Sixth Extinction,” which you may have read. She is a staff writer at The New Yorker and just one of the great science ... |
|
In Our Image: The Ethics of CRISPR Genome EditingJ. C. Eissenberg, Biomolecular Concepts, 12:1-7. 2021.Here, I discuss the ethics surrounding the transformative CRISPR/Cas9mediated genome editing technology in the contexts of human genome editing to eradicate genetic disease and of gene drive technology to eradicate animal vectors of human disease. |
|
CRISPR and the splice to survive: New gene-editing technology could be used to save species from extinction—or to eliminate them.E. Kolbert, New Yorker, 2021.About a year ago, not long before the pandemic began, I paid a visit to the center, which is an hour southwest of Melbourne. The draw was an experiment on a species of giant toad known familiarly as the cane toad. The toad was introduced to Australia as an agent of pest control, ... |
|
Targeting evolutionary conserved sequences circumvents the evolution of resistance in a viral gene drive against human cytomegalovirusM. Walter, R. Perrone and E. Verdin, bioRxiv, 2021.01.08.425902. 2021.Here, we analyze in cell culture experiments the evolution of resistance in a gene drive against human cytomegalovirus. We report that after an initial invasion of the wildtype population, a drive-resistant population is positively selected over time and outcompetes gene drive ... |
|
Control of malaria-transmitting mosquitoes using gene drivesT. Nolan, Philosophical Transactions of the Royal Society B: Biological Sciences, 376:20190803. 2020.In this article, I will discuss the relative merits of this type of gene drive, as well as barriers to its technical development and to its deployment in the field as malaria control. This article is part of the theme issue ‘Novel control strategies for mosquito-borne ... |
|
Vector dynamics influence spatially imperfect genetic interventions against diseaseM. K. Yuksel, C. H. Remien, B. Karki, J. J. Bull and S. M. Krone, Evolution, Medicine, and Public Health, 9:1-10. 2020.In spatially structured populations, imperfect coverage of the vector will leave pockets in which the parasite may persist. Movement by humans may disrupt this local persistence and facilitate eradication when these pockets are small, spreading parasite reproduction outside ... |
|
New GE unintentionally leaves traces in cellsC. Then, Testbiotech, 2020.A new scientific publication shows that CRISPR/Cas gene scissor applications in animals unintentionally leave traces. The findings are not related to unintended changes in the DNA, which have often been described, but to gene regulation, i.e. epigenetics. The effects are ... |
|
New insect species made via genetic engineeringL. Leffer, SCIENCELINE, 2020.A biotech fast-forward button for evolution is on the horizon. Researchers say they have used a novel genetic engineering method to create several new species of fruit fly in the lab for the first time — an achievement which might help put a future without malaria and other ... |
|
A CRISPR endonuclease gene drive reveals two distinct mechanisms of inheritance biasS. A. N. Verkuijl, E. González, J. X. D. Ang, M. Li, N. P. Kandul, M. Anderson, O. S. Akbari, M. Bonsall and L. Alphey, bioRxiv, 2020.12.15.421271. 2020.In this study, we report the functioning of sds3, bgcn, and nup50 expressed Cas9 in an Aedes aegypti homing split drive system targeting the white gene. We report their inheritance biasing capability, propensity for maternal deposition, and zygotic/somatic expression. ... |
|
The Antiviral Small-Interfering RNA Pathway Induces Zika Virus Resistance in Transgenic Aedes aegyptiA. E. Williams, I. Sanchez-Vargas, W. R. Reid, J. Y. Lin, A. W. E. Franz and K. E. Olson, Viruses, 12:18. 2020.We used CRISPR/Cas9 to re-target a previously characterized locus (Chr2:321382225) and engineered mosquitoes expressing an inverted repeat (IR) dsRNA against the NS3/4A region of the ZIKV genome. Small RNA analysis revealed that the IR effector triggered the mosquito's siRNA ... |
|
Evading resistance to gene drivesR. Gomulkiewicz, M. L. Thies and J. J. Bull, bioRxiv, 2020.08.27.270611. 2020.Our analyses suggest that among gene drives that cause moderate suppression, toxin-antidote systems are less apt to select for resistance than homing drives. Single drives of moderate effect might cause only moderate population suppression, but multiple drives (perhaps delivered ... |
|
Design and analysis of CRISPR-based underdominance toxin-antidote gene drivesJ. Champer, S. E. Champer, I. K. Kim, A. G. Clark and P. W. Messer, Evolutionary Applications, 18. 2020.We model drives which target essential genes that are either haplosufficient or haplolethal, using nuclease promoters with expression restricted to the germline, promoters that additionally result in cleavage activity in the early embryo from maternal deposition, and promoters ... |
|
Mosquito population modification: the drive to malaria eradicationA. A. James, BugBitten BMC, 2020.We have had considerable success in the past demonstrating that we can use modern molecular biological and insect transgenesis tools to make genes that prevent mosquitoes from passing on parasites (see 1 and 2). We have focused most recently on laboratory experiments to find ways ... |
|
Split drive killer-rescue provides a novel threshold-dependent gene driveM. P. Edgington, T. Harvey-Samuel and L. Alphey, Scientific Reports, 10:13. 2020.We show that although end-joining repair mechanisms may cause the system to break down, under certain conditions, it should persist over time scales relevant for genetic control programs. The potential of such a system to provide localised population suppression via sex ratio ... |
|
Gene drive blocks malaria transmission in mosquitoeslabonline, labonline, 2020.Employing a strategy known as ‘population modification’, which involves using a CRISPR-Cas9 gene drive system to introduce genes preventing parasite transmission into mosquito chromosomes, University of California (UC) researchers have made a major advance in the use of ... |
|
Evading evolution of resistance to gene drivesR. Gomulkiewicz, M. L. Thies and J. J. Bull, bioRxiv, 2020.08.27.270611. 2020.Our analyses suggest that among gene drives that cause moderate suppression, toxin-antidote systems are less apt to select for resistance than homing drives. Single drives of this type would achieve only partial population suppression, but multiple drives (perhaps delivered ... |
|
A gene-drive rescue system for the modification of malaria mosquito populationsA. Adolfi, Nature Research Bioengineering Community, 2020.Mosquito populations can now be reliably modified using 1) antimalarial molecules that block parasite development and 2) a CRISPR-based gene drive system that mediates their rapid spreading across the vector population. |
|
UC researchers pioneer more effective method of blocking malaria transmission in mosquitoesUCI, UCI News, 2020.University of California, Irvine postdoctoral researcher Adriana Adolfi, in collaboration with colleagues at UCI, UC Berkeley and UC San Diego, followed up on the group’s pioneering effort to develop CRISPR-based gene drive systems for making mosquito vectors resistant to ... |
|
Efficient population modification gene-drive rescue system in the malaria mosquito Anopheles stephensiA. Adolfi, V. M. Gantz, N. Jasinskiene, H.-F. Lee, K. Hwang, G. Terradas, E. A. Bulger, A. Ramaiah, J. B. Bennett, J. J. Emerson, J. M. Marshall, E. Bier and A. A. James, Nature Communications, 11:5553. 2020.Here, we develop a recoded gene-drive rescue system for population modification of the malaria vector, Anopheles stephensi, that relieves the load in females caused by integration of the drive into the kynurenine hydroxylase gene by rescuing its function. Non-functional resistant ... |
|
Gene Drive: The What, How, Why, and Whether We ShouldN. Pazhayam, The Pipettepen, 2020.Under regular Mendelian inheritance, the probability of inheriting a particular allele from a heterozygous parent is 50% – this is because offspring can only inherit one or the other chromosome from each parent. However, gene drive is a technology that changes this probability ... |
|
WHO Refers to GM Mosquitoes as Beneficial TechnologyISAAA, Crop Biotech Update, 2020.The World Health Organization (WHO) released its official statement to clarify its stance on the evaluation and use of genetically modified (GM) mosquitoes and its use to control vector-borne diseases (VBD). WHO says it supports the investigation of all potentially beneficial ... |
|
Position of ARRIGE Scientific Committee on Gene DriveARRIGE Scientific Committee on Gene Drive, ARRIGE Newsletter, 2020.We are facing a change of paradigm that must lead us to be responsible for altered inheritance and the hybridization between artefacts, considered as natural or artificial, at the very moment when this division itself is blurred by the engineering capacity to act on mutations, ... |
|
Progress Toward Zygotic and Germline Gene Drives in MiceC. Pfitzner, M. A. White, S. G. Piltz, M. Scherer, F. Adikusuma, J. N. Hughes and P. Q. Thomas, The CRISPR Journal, 3:388-397. 2020.Here, we investigated the efficiency of CRISPR-Cas9-based gene drives in Mus musculus by constructing "split drive" systems where gRNA expression occurs on a separate chromosome to Cas9, which is under the control of either a zygotic (CAG) or germline (Vasa) promoter. |
|
Engineered Gene Drives: State of Research Webinar Series by The GeneConvene Global Collaborative September-October 2020David O'Brochta and Hector Quemada, GeneConvene Global Collaborative, 2020.A series of technical webinars on engineered gene drive technology research and development given by leading researchers in the field. |
|
Gene Drives Could Kill Mosquitoes And Suppress Herpesvirus InfectionsA. Berezow, American Council on Science and Health, 2020.A team of researchers writing in the journal Nature Communications has shown that a gene drive can be used to suppress infection with cytomegalovirus, a type of herpesvirus. |
|
Resistance to natural and synthetic gene drive systemsT. A. R. Price, N. Windbichler, R. L. Unckless, A. Sutter, J.-N. Runge, P. A. Ross, A. Pomiankowski, N. L. Nuckolls, C. Montchamp-Moreau, N. Mideo, O. Y. Martin, A. Manser, M. Legros, A. M. Larracuente, L. Holman, J. Godwin, N. Gemmell, C. Courret, A. Buc, Journal of Evolutionary Biology, 2020.This review summarizes our current knowledge of drive resistance in both natural and synthetic gene drives. We explore how insights from naturally occurring and synthetic drive systems can be integrated to improve the design of gene drives, better predict the outcome of releases ... |
|
Inherently confinable split-drive systems in DrosophilaG. Terradas, A. B. Buchman, J. B. Bennett, I. Shriner, J. M. Marshall, O. S. Akbari and E. Bier, bioRxiv, 2020.09.03.282079. 2020.Here, we test split gene-drive (sGD) systems in Drosophila melanogaster that were inserted into essential genes required for viability (rab5, rab11, prosalpha2) or fertility (spo11). I |
|
Chromosome drives via CRISPR-Cas9 in yeastH. Xu, M. Han, S. Zhou, B.-Z. Li, Y. Wu and Y.-J. Yuan, Nature Communications, 11:4344. 2020.Our results show that the entire Saccharomyces cerevisiae chromosome can be eliminated efficiently through only one double-strand break around the centromere via CRISPR-Cas9. As a proof-of-concept experiment of this CRISPR-Cas9 chromosome drive system, the synthetic yeast ... |
|
Evading evolution of resistance to gene drivesR. Gomulkiewicz, M. L. Thies and J. J. Bull, bioRxiv, 2020.Here we develop mathematical and computational models to identify conditions under which suppression drives will evade resistance, even if resistance is present initially. |
|
Next-generation gene drive for population modification of the malaria vector mosquito, Anopheles gambiaeR. Carballar-Lejarazú, C. Ogaugwu, T. Tushar, A. Kelsey, T. B. Pham, J. Murphy, H. Schmidt, Y. Lee, G. C. Lanzaro and A. A. James, Proceedings of the National Academy of Sciences, 202010214. 2020.We show here that the Cas9/guide RNA-based gene-drive components of a genetically-engineered malaria mosquito vector, Anopheles gambiae, achieve key target product profile requirements for efficacy and performance. |
|
A home and rescue gene drive forces its inheritance stably persisting in populationsN. P. Kandul, J. Liu, J. B. Bennett, J. M. Marshall and O. Akbari, bioRxiv, 2020.08.21.261610. 2020.We demonstrate that HomeR can achieve nearly ~100% transmission enabling it to persist at genotypic fixation in several multi-generational population cage experiments, underscoring its long term stability. |
|
Towards Responsive Eco-technology: The Development of a Male Sex-biased MouseW. Kamau, Massachusetts Institute of Technology, 2020.CRISPR-Cas systems have catalyzed the emergence of several synthetic population management strategies, like gene drives, for controlling pests and disease vectors. As these technologies garner greater visibility in both general and regulatory audiences, questions have arisen ... |
|
Modelling the suppression of a malaria vector using a CRISPR-Cas9 gene drive to reduce female fertilityA. R. North, A. Burt and H. C. J. Godfray, BMC Biology, 18:98. 2020.Gene drives based on CRISPR-Cas9 technology are increasingly being considered as tools for reducing the capacity of mosquito populations to transmit malaria, and one of the most promising options is driving endonuclease genes that reduce the fertility of female mosquitoes. Here, ... |
|
Meet Cosmo, the gene-edited Crispr calfS. D. McClain, Capital Press, 2020.Cosmo was the grand finale of a series of experiments to create a line of genome-edited cattle tailored for the beef industry. He was designed to produce 75% male offspring. |
|
Can a population targeted by a CRISPR-based homing gene drive be rescued?N. O. Rode, V. Courtier-Orgogozo and F. Débarre, G3-Genes Genomes Genetics, 2020.N. O. Rode, V. Courtier-Orgogozo and F. Débarre (2020). G3 doi: 10.1534/g3.120.401484 Developing countermeasures is important to control the spread of gene drives, should they result in unanticipated damages. One proposed countermeasure is the introduction of individuals ... |
|
The future of beef might be a sausage festN. Johnson, grist, 2020.N. Johnson. (2020) grist. A media report on the creation of a cow with a sex ratio altering genetic change expected to lead to 3/4 of the cow's offspring being males. This type of sex ratio distortion results in gene drive and is also being considered to help control populations ... |
|
Meet Cosmo the Frankenbull: Scientists genetically engineer a bull calf so that 75 per cent of its offspring will be maleJ. Pinkstone, Daily Mail, 2020.J. Pinkstone (2020). Daily Mail. A media report on the creation of a cow with a sex ratio altering genetic change expected to lead to 3/4 of the cow's offspring being males. This type of sex ratio distortion results in gene drive and is also being considered to help control ... |
|
Meet the first genetically modified bull. Why did scientists change itJ. Kessler, Free News, 2020.J. Kessler (2020). Free News. UC Davis scientists have successfully introduced a bovine embryo, or the bovine SRY gene, which is responsible for the development of the male. This is the first demonstration of targeted gene insertion for large DNA sequences through embryo-mediated ... |
|
Genome Editing 2020: Ethics and Human Rights in Germline Editing in Humans and Gene Drives in MosquitoesG. J. Annas, American Journal of Law and Medicine, 46:143-165. 2020.G. J. Annas (2020). American Journal of Law and Medicine. doi: 10.1177/0098858820933492. I begin with a discussion of so far disastrously unsuccessful attempts to regulate germline editing in humans, including a summary of the first application of germline genome editing in ... |
|
Small-Molecule Control of Super-Mendelian Inheritance in Gene DrivesV. López Del Amo, B. S. Leger, K. J. Cox, S. Gill, A. L. Bishop, G. D. Scanlon, J. A. Walker, V. M. Gantz and A. Choudhary, Cell Reports, 31:107841. 2020.Summary Synthetic CRISPR-based gene-drive systems have tremendous potential in public health and agriculture, such as for fighting vector-borne diseases or suppressing crop pest populations. These elements can rapidly spread in a population by breaching the inheritance limit of ... |
|
Development of zygotic and germline gene drives in miceC. Pfitzner, J. N. Hughes, M. A. White, M. Scherer, S. G. Piltz and P. Q. Thomas, bioRxiv, 2020.Here we investigated the efficiency of CRISPR/Cas9-based gene drives in Mus musculus by constructing "split drive" systems with Cas9 under the control of zygotic (CAG) or germline (Vasa) promoters. |
|
CRISPR/Cas9 gene drive technology to control transmission of vector-borne parasitic infectionsM. Nateghi Rostami, Parasite Immunology, preprint:e12762. 2020.Gene drive is the process of copying of an endonuclease-containing cassette that leads to increased frequency of inheritance of the desired traits in a targeted population. CRISPR/Cas9 technology is advancing genetic manipulation of insects in the field of gene drive ... |
|
Can CRISPR gene drive work in pest and beneficial haplodiploid species?J. Li, O. Aidlin Harari, A.-L. Doss, L. L. Walling, P. W. Atkinson, S. Morin and B. E. Tabashnik, Evolutionary Applications, 2020.Gene drives based on CRISPR/Cas9 have the potential to reduce the enormous harm inflicted by crop pests and insect vectors of human disease, as well as to bolster valued species. In contrast with extensive empirical and theoretical studies in diploid organisms, little is known ... |
|
Simulation models from: Can CRISPER-mediated gene drive work in pest and beneficial haplodiploid species?J. Li and B. Tabashnik, Dryad, 2020.Gene drives based on CRISPR/Cas9 have the potential to reduce the enormous harm inflicted by crop pests and insect vectors of human disease, as well as to bolster valued species. In contrast with extensive empirical and theoretical studies in diploid organisms, little is known ... |
|
Le forçage génétique (gène drive) et ses applicationsV. Courtier-Orgogozo, Bulletin de l'Académie Vétérinaire de France, 172:94-98. 2020.Gene drive is a new genetic engineering technology that has been developed over the past five years and that allows genetic modifications to spread rapidly in natural populations. Potential applications are numerous, for public health issues, agriculture and conservation biology. ... |
|
Malaria mosquitoes eliminated in lab by creating all male populationsH. Dunning, Imperial College London, 2020.A team led by Imperial College London spread a genetic modification that distorts the sex ratio through a population of caged Anopheles gambiae mosquitoes using ‘gene drive’ technology. |
|
A male-biased sex-distorter gene drive for the human malaria vector Anopheles gambiaeA. Simoni, A. M. Hammond, A. K. Beaghton, R. Galizi, C. Taxiarchi, K. Kyrou, D. Meacci, M. Gribble, G. Morselli, A. Burt, T. Nolan and A. Crisanti, Nature Biotechnology, 2020.We report a male-biased sex-distorter gene drive (SDGD) in the human malaria vector Anopheles gambiae. |
|
Gene drive outcomes not determined by genetic variation – A PodcastThomas Locke, Malaria Minute, 2020.Gene drives are a system of genetic modification that use ‘molecular scissors’ to edit DNA sequences that self-perpetuate to ensure the rapid spread of mutation in a population. They offer new avenues for eradicating vector-borne diseases like malaria. They rely on the Cas9 ... |
|
Super-Mendelian inheritance mediated by CRISPR-Cas9 in the female mouse germlineH. A. Grunwald, V. M. Gantz, G. Poplawski, X.-r. S. Xu, E. Bier and K. L. Cooper, TAGC 2020, 2020.A gene drive biases the transmission of one of the two copies of a gene such that it is inherited more frequently than by random segregation. Highly efficient gene drive systems that have recently been developed in insects, which leverage the sequence-targeted DNA cleavage ... |
|
Gene drive and resilience through renewal with next generation Cleave and Rescue selfish genetic elementsG. Oberhofer, T. Ivy and B. A. Hay, Proceedings of the National Academy of Sciences, 117:9013-9021. 2020.Gene drive can spread beneficial traits through populations, but will never be a one-shot project in which one genetic element provides all desired modifications, for an indefinitely long time. Here, we show that gene drive-mediated population modification in Drosophila can be ... |
|
Can a population targeted by a CRISPR-based homing gene drive be rescued?N. O. Rode, V. Courtier-Orgogozo and F. Débarre, bioRxiv, 2020.03.17.995829. 2020.CRISPR-based homing gene drive is a genetic control technique aiming to modify or eradicate natural populations through the release of individuals carrying an engineered piece of DNA that can be inherited by all their progeny. Developing countermeasures is important to control ... |
|
Computational and experimental performance of CRISPR homing gene drive strategies with multiplexed gRNAsS. E. Champer, S. Y. Oh, C. Liu, Z. Wen, A. G. Clark, P. W. Messer and J. Champer, Science Advances, 6:eaaz0525. 2020.The rapid evolution of resistance alleles poses a major obstacle for genetic manipulation of populations with CRISPR homing gene drives. One proposed solution is using multiple guide RNAs (gRNAs), allowing a drive to function even if some resistant target sites are present. Here, ... |
|
Anti-CRISPR protein applications: natural brakes for CRISPR-Cas technologiesMarino, N. D., Pinilla-Redondo, R. , Csorgo, B., Bondy-Denomy, J., Nature Methods, 2020.Clustered, regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) genes, a diverse family of prokaryotic adaptive immune systems, have emerged as a biotechnological tool and therapeutic. The discovery of protein inhibitors of CRISPR-Cas systems, ... |
|
Population-level multiplexing: A promising strategy to manage the evolution of resistance against gene drives targeting a neutral locusM. P. Edgington, T. Harvey-Samuel and L. Alphey, Evolutionary Applications, 10. 2020.CRISPR-based gene drives bias inheritance in their favour by inducing double-stranded breaks (DSBs) at wild-type homologous loci and using the drive transgene as a repair template-converting drive heterozygotes into homozygotes. Recent studies have shown that alternate ... |
|
Genome engineering in insects: focus on the CRISPR/Cas9 systemHillary, V. Edwin Ceasar, Stanislaus Antony Ignacimuthu, S., Genome Engineering via CRISPR-Cas9 System, 2020.Genome engineering is a precise tool used to alter the genome of desired organism. Zinc finger nuclease (ZFN), transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR), and the CRISPR-associated RNA guided ... |
|
Public Opinion Towards Gene Drive as a Pest Control Approach for Biodiversity Conservation and the Association of Underlying WorldviewsE. A. MacDonald, J. Balanovic, E. D. Edwards, W. Abrahamse, B. Frame, A. Greenaway, R. Kannemeyer, N. Kirk, F. Medvecky, T. L. Milfont, J. C. Russell and D. M. Tompkins, Environmental Communication-a Journal of Nature and Culture, 15:1-16. 2020.Synthetic gene drive approaches are nascent technologies with potential applicability for pest control for conservation purposes. Responsible science mandates that society be engaged in a dialogue over new technology, particularly where there exist global ramifications as with ... |
|
Development of a confinable gene drive system in the human disease vector Aedes aegyptiM. Li, T. Yang, N. P. Kandul, M. Bui, S. Gamez, R. Raban, J. Bennett, H. M. Sánchez C, G. C. Lanzaro, H. Schmidt, Y. Lee, J. M. Marshall and O. S. Akbari, eLife, 9:e51701. 2020.Aedes aegypti is the principal mosquito vector for many arboviruses that increasingly infect millions of people every year. With an escalating burden of infections and the relative failure of traditional control methods, the development of innovative control measures has become ... |
|
The kill-switch for CRISPR that could make gene-editing saferE. Dolgin, Nature, 577:308-310. 2020.How anti-CRISPR proteins and other molecules could bolster biosecurity and improve medical treatments. |
|
These are the 5 most dystopian technologies of 2020 and beyondM. Sullivan, FastCompany, 2019.Tech is always both good and bad. But we live in a time when everything gets weaponized—ideas, images, ancient texts, biases, and even people. And technology provides the tools to do it easier, faster, and with less resources. |
|
Development of genetic control strategies for insect pests using CRISPR/Cas9 Développement de méthodes de lutte génétique contre de l’insecte nuisible basé sur le system CRISPR/Cas9E. Green, Université de Strasbourg, 2019.nsect pest control remains an important economic, environmental, and public health challenge. CRISPR/Cas9 gene drive (GD) is a novel genetic control strategy. GDs are genetic systems that can rapidly invade a population. This manuscript presents my efforts to develop gene drives ... |
|
What is genome editing?NHGRI, NHGRI, 2019.Genome editing is a method that lets scientists change the DNA of many organisms, including plants, bacteria, and animals. Editing DNA can lead to changes in physical traits, like eye color, and disease risk. Scientists use different technologies to do this. |
|
Improving plant-resistance to insect-pests and pathogens: The new opportunities through targeted genome editingD. S. Bisht, V. Bhatia and R. Bhattacharya, Seminars in Cell & Developmental Biology, 96:65-76. 2019.The advantages of high input agriculture are fading away due to degenerating soil health and adverse effects of climate change. Safeguarding crop yields in the changing environment and dynamics of pest and pathogens, has posed new challenges to global agriculture. Thus, ... |
|
Genetic pest management technologies to control invasive rodentsD. Kanavy and D. Threadgill, Island invasives: scaling up to meet the challenge, 2019.Many strategies exist to manage invasive pests on islands, ranging from poison to trapping, with varying degrees of success. Genetic technologies are increasingly being applied to insect pests, but so far, not to vertebrates. We are implementing a genetic strategy to eradicate ... |
|
Trialling gene drives to control invasive species: what, where and how?T. Harvey-Samuel, K. J. Campbell, M. Edgington and L. Alphey, Island invasives: scaling up to meet the challenge, 2019.The control of invasive species would be enhanced through the addition of novel, more effective and sustainable pest management methods. One control option yet to be trialled in the field is to deploy transgene-based ‘Gene Drives’: technologies which force the inheritance of ... |
|
Towards a genetic approach to invasive rodent eradications: assessing reproductive competitiveness between wild and laboratory miceM. Serr, N. Heard and J. Godwin, Island invasives: scaling up to meet the challenge, 2019.House mice are significant invasive pests, particularly on islands without native mammalian predators. As part of a multi-institutional project aimed at suppressing invasive mouse populations on islands, we aim to create heavily male-biased sex ratios with the goal of causing the ... |
|
A potential new tool for the toolbox: assessing gene drives for eradicating invasive rodent populationsK. J. Campbell, J. R. Saah, P. R. Brown, J. Godwin, F. Gould, G. R. Howald, A. Piaggio, P. Thomas, D. M. Tompkins, D. Threadgill, J. Delborne, D. Kanavy, T. Kuiken, H. Packard, M. Serr and A. Shiels, Island invasives: scaling up to meet the challenge, 2019.Invasive rodents have significant negative impacts on island biodiversity. All but the smallest of rodent eradications currently rely on island-wide rodenticide applications. Although signifi cant advances have been made in mitigating unintended impacts, rodent eradication on ... |
|
Modulating CRISPR gene drive activity through nucleocytoplasmic localization of Cas9 in S. cerevisiaeM. E. Goeckel, E. M. Basgall, I. C. Lewis, S. C. Goetting, Y. Yan, M. Halloran and G. C. Finnigan, Fungal Biology Biotechnology, 6:2. 2019.In this study, we use artificial gene drives in budding yeast to explore mechanisms to modulate nuclease activity of Cas9 through its nucleocytoplasmic localization. We examine non-native nuclear localization sequences (both NLS and NES) on Cas9 fusion proteins in vivo through ... |
|
CRISPR gene drive efficiency and resistance rate is highly heritable with no common genetic loci of large effectChamper, JW, Z. X.; Luthra, A.; Reeves, R.; Chung, J.; Liu, C.; Lee, Y. L.; Liu, J. X.; Yang, E.; Messer, P. W.; Clark, A. G., Genetics, 212:333-341. 2019.Gene drives could allow for control of vector-borne diseases by directly suppressing vector populations or spreading genetic payloads designed to reduce pathogen transmission. Clustered regularly interspaced short palindromic repeat (CRISPR) homing gene drives work by cleaving ... |
|
A Multiple Gene Drive SystemFerdinand Nanfack Minkeu, IGTRCN, 2019.Yan & Finnigan, (2018) recently published a paper in Scientific Reports describing an artificial multi-locus gene drive system by using a single Cas9 and three guide RNA (gRNA) in the budding yeast Saccharomyces cerevisiae. Nuclease-based gene drives do not follow the typical ... |
|
CRISPR-Cas9. The greatest advancement in genetic edition techniques requires an ethical reflectionGomez-Tatay, LA, J., Cuadernos De Bioetica, 30:171-185. 2019.The adaptation of the CRISPR system as a genetic editing tool has led to a revolution in many fields of application, as this technique is considerably faster, easier to perform and more efficient than predecessor techniques. However, some of these applications raise objective ... |
|
Gene driving the farm: who decides, who owns, and who benefits?Montenegro de Wit, M, Agroecology and Sustainable Food Systems, 43:1054-1074. 2019.This commentary essay explores the social and ecological implications of gene-driving agriculture. |
|
Multiplexing gRNAs to Hedge Against Resistance to Gene DriveTravis Van Warmerdam, IGTRCN, 2018.Recently, Oberhofer et al (2018) published a paper examining the mechanisms of homing endonuclease gene drives in The Proceedings of the National Academy of Sciences. They used a novel nuclease-encoding cassette containing four multiplexed gRNAs targeting genes required for ... |
|
Cas9 Gene Drive, Sex-Conversion and Evolved ResistanceAnna Buchman, IGTRCN, 2018.In a recent manuscript, KaramiNejadRanjbar et al. demonstrate the development of a proof of principle Cas9-based suppression gene drive in D. melanogaster that can be applied to pest insects, and discuss the implications of resistance allele formation for practical use of such a ... |
|
Pest demography critically determines the viability of synthetic gene drives for population controlK. E. Wilkins, T. A. A. Prowse, P. Cassey, P. Q. Thomas and J. V. Ross, Mathematical Biosciences, 305:160-169. 2018.Synthetic gene drives offer a novel solution for the control of invasive alien species. CRISPR-based gene drives can positively bias their own inheritance, and comprise a DNA sequence that is replicated by homologous recombination. Since gene drives can be positioned to silence ... |
|
A sustainable synthetic biology approach for the control of the invasive golden mussel (Limnoperna fortunei)M. F. Rebelo, L. F. Afonso, J. A. Americo, L. da Silva, J. L. B. Neto, F. Dondero and Q. Zhang, PeerJ Preprints, 6:e27164v3. 2018.The recent development of the CRISPR-Cas9-based gene drive has created the conditions to seriously consider this technology to solve one of the major environmental challenges in biodiversity conservation i.e. the control of invasive species. There is no efficient control method ... |
|
CRISPR ExplainedMayo Clinic, Mayo Clinic, 2018.A short video that simply explains what CRISPR is and how it is used for gene editing. Simple language and highly accessible. |
|
What is CRISPR?A. Vidyasagar, LiveScience, 2018.CRISPR technology is a simple yet powerful tool for editing genomes. It allows researchers to easily alter DNA sequences and modify gene function. Its many potential applications include correcting genetic defects, treating and preventing the spread of diseases and improving ... |
|
Current CRISPR gene drive systems are likely to be highly invasive in wild populationsNoble, CA, Ben; Church, George M.; Esvelt, Kevin M.; Nowak, Martin A., eLife, 7:e33423. 2018.Recent reports have suggested that self-propagating CRISPR-based gene drive systems are unlikely to efficiently invade wild populations due to drive-resistant alleles that prevent cutting. Here we develop mathematical models based on existing empirical data to explicitly test ... |
|
Gene drive systems: Do they have a place in agricultural weed management?Neve, P, Pest Management Science, 74:2672-2679. 2018.There is a pressing need for novel control techniques in agricultural weed management. Direct genetic control of agricultural pests encompasses a range of techniques to introduce and spread novel, fitness-reducing genetic modifications through pest populations. Recently, the ... |
|
Identifying and detecting potentially adverse ecological outcomes associated with the release of gene-drive modified organismsHayes, KRH, G. R.; Dana, G. V.; Foster, S. D.; Ford, J. H.; Thresher, R.; Ickowicz, A.; Peel, D.; Tizard, M.; De Barro, P.; Strive, T.; Dambacher, J. M., Journal of Responsible Innovation, 5:S139-S158. 2018.Synthetic gene drives could provide new solutions to a range of old problems such as controlling vector-borne diseases, agricultural pests and invasive species. In this paper, we outline methods to identify hazards and detect potentially adverse ecological outcomes at the ... |
|
Identifying knowledge gaps for gene drive research to control invasive animal species: The next CRISPR stepMoro, DB, Margaret; Kennedy, Malcolm; Campbell, Susan; Tizard, Mark, Global Ecology and Conservation, 13:e00363. 2018.Invasive animals have been linked to the extinctions of native wildlife, and to significant agricultural financial losses or impacts. Current approaches to control invasive species require ongoing resources and management over large geographic scales, and often result in the ... |
|
Economic issues to consider for gene drivesMitchell, PDB, Z.; McRoberts, N., Journal of Responsible Innovation, 5:S180-S202. 2018.We examine four economic issues regarding gene drive applications made possible by gene editing technologies. First, whether gene drives are self-sustaining or self-limiting will largely determine which types of organizations have incentives to develop and deploy gene drives and ... |
|
Gene drive inhibition by the anti-CRISPR proteins AcrIIA2 and AcrIIA4 in Saccharomyces cerevisiaeBasgall, EMG, S. C.; Goeckel, M. E.; Giersch, R. M.; Roggenkamp, E.; Schrock, M. N.; Halloran, M.; Finnigan, G. C., Microbiology-Sgm, 164:464-474. 2018.Given the widespread use and application of the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas gene editing system across many fields, a major focus has been the development, engineering and discovery of molecular means to precisely control and regulate ... |
|
CRISPR/Cas9 -mediated gene knockout of Anopheles gambiae FREP1 suppresses malaria parasite infectionDong, YS, Maria L.; Marois, Eric; Dimopoulos, George, PLOS Pathogens, 14:e1006898. 2018.The causative agent of malaria, Plasmodium, has to complete a complex infection cycle in the Anopheles gambiae mosquito vector in order to reach the salivary gland from where it can be transmitted to a human host. The parasite’s development in the mosquito relies on numerous ... |
|
Genome editing: scientific opportunities, public interests and policy options in the European UnionEASAC, European Academies Science Advisory Council, 2017.In many of the areas in which EASAC, the European Academies’ Science Advisory Council, works, where a large and solid body of knowledge is needed to inform the action of our societies, it is important to recognise that there is an intimate mix of science and values involved in ... |
|
Gene drives do not always increase in frequency: from genetic models to risk assessmentde Jong, TJ, Journal Fur Verbraucherschutz Und Lebensmittelsicherheit-Journal of Consumer Protection and Food Safety, 12:299-307. 2017.Homing genes encode endonucleases that make a double stranded break in the DNA, destroying a target site on the homologous chromosome. When the cell repairs the break the homing allele is copied, converting a heterozygote into a homozygote. This results in gene drive (GD), an ... |
|
The promise and peril of CRISPR gene drivesZentner, GEW, Michael J. C., Bioessays, 39:1-9. 2017.Gene drives are selfish genetic elements that use a variety of mechanisms to ensure they are transmitted to subsequent generations at greater than expected frequencies. Synthetic gene drives based on the clustered regularly interspersed palindromic repeats (CRISPR) genome editing ... |
|
The End of the GMO? Genome Editing, Gene Drives and New Frontiers of Plant TechnologyK. L. Hefferon and R. J. Herring, Review of Agrarian Studies, 7. 2017.mprovements to agriculture will constitute one of the world’s greatest challenges in the coming century. Political and social controversies, as well as complications of plant breeding, intellectual property, and regulation, have compromised the promised impact of genetically ... |
|
Prospects and challenges of CRISPR/Cas genome editing for the study and control of neglected vector-borne nematode diseasesM. Zamanian and E. C. Andersen, The FEBS Journal, 283:3204-3221. 2016.Neglected tropical diseases caused by parasitic nematodes inflict an immense health and socioeconomic burden throughout much of the developing world. Current estimates indicate that more than two billion people are infected with nematodes, resulting in the loss of 14 million ... |
|
Lethal Gene Drive Selects InbreedingJ. J. Bull, bioRxiv, 046847. 2016.ere, population genetic models are used to consider the evolution of inbreeding (specifically selfing) as a possible response to a recessively lethal HEG with complete segregation distortion. Numerical analyses indicate a rich set of outcomes, but selfing often evolves in ... |