Keywords: CRISPR

A theory of resistance to multiplexed gene drive demonstrates the significant role of weakly deleterious natural genetic variation

B. S. Khatri and A. Burt,  Proceedings of the National Academy of Sciences,  119:e2200567119. 2022.
CRISPR-based gene drives have the potential for controlling natural populations of disease vectors, such as malaria-carrying mosquitoes in sub-Saharan Africa. If successful, they hold promise of significantly reducing the burden of disease and death from malaria and many other ...
Keywords: , , , ,

Development of CRISPR/Cas9-Mediated Gene-Drive Construct Targeting the Phenotypic Gene in Plutella xylostella

M. Asad, D. Liu, J. Li, J. Chen and G. Yang,  Frontiers in Physiology,  13:938621. 2022.
The gene-drive system can ensure that desirable traits are transmitted to the progeny more than the normal Mendelian segregation. The clustered regularly interspersed palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) mediated gene-drive system has been demonstrated ...
Keywords: , , , ,

CRISPR-Mediated Genome Engineering in Aedes aegypti

R. Sun, M. Li, C. J. McMeniman and O. S. Akbari,  piRNA: Methods and Protocols,  2022.
CRISPR-mediated genome engineering technologies have been adapted to a wide variety of organisms with high efficiency and specificity. The yellow fever mosquito, Aedes aegyptiAedes aegypti, is one such organism. It is also responsible for transmitting a wide variety of deadly ...
Keywords: , , , ,

Gene Drives: A Potentially New Weapon Against Mosquitoes

M. Sherman,  Times Union Online,  2022.
Scientists have studied gene drives for more than 50 years, and to most of us this has been a well-kept secret. The development of a powerful genome editing tool in 2012, CRISPR/Cas9,1 led to recent breakthroughs in gene drive research that built on that half century’s worth ...
Keywords: , , , ,

Active genetics comes alive

V. M. Gantz and E. Bier,  BioEssays,  2022.
Abstract Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-based ?active genetic? elements developed in 2015 bypassed the fundamental rules of traditional genetics. Inherited in a super-Mendelian fashion, such selfish genetic entities offered a variety of ...
Keywords: , , , ,

Investigating CRISPR/Cas9 gene drive for production of disease-preventing prion gene alleles

A. R. Castle, S. Wohlgemuth, L. Arce and D. Westaway,  PLoS One,  17:e0269342. 2022.
Prion diseases are a group of fatal neurodegenerative disorders that includes chronic wasting disease, which affects cervids and is highly transmissible. Given that chronic wasting disease prevalence exceeds 30% in some endemic areas of North America, and that eventual ...
Keywords: , , , ,

Gene Editing and Genetic Control of Hemipteran Pests: Progress, Challenges and Perspectives

I. D. Pacheco, L. L. Walling and P. W. Atkinson,  Frontiers in Bioengineering and Biotechnology,  10. 2022.
The origin of the order Hemiptera can be traced to the late Permian Period more than 230 MYA, well before the origin of flowering plants 100 MY later in during the Cretaceous period. Hemipteran species consume their liquid diets using a sucking proboscis; for phytophagous ...
Keywords: , , , ,

Leveraging a natural murine meiotic drive to suppress invasive populations

L. Gierus, A. Birand, M. D. Bunting, G. I. Godahewa, S. G. Piltz, K. P. Oh, A. J. Piaggio, D. W. Threadgill, J. Godwin, O. Edwards, P. Cassey, J. V. Ross, T. A. A. Prowse and P. Q. Thomas,  bioRxiv,  2022.05.31.494104. 2022.
Invasive rodents, including house mice, are a major cause of environmental damage and biodiversity loss, particularly in island ecosystems. Eradication can be achieved through the distribution of rodenticide, but this approach is expensive to apply at scale, can have negative ...
Keywords: , , , ,

A nickase Cas9 gene-drive system promotes super-Mendelian inheritance in Drosophila

V. L. Del Amo, S. S. Juste and V. M. Gantz,  Cell Rep,  39:110843. 2022.
CRISPR-based gene-drives have been proposed for managing insect populations, including disease-transmitting mosquitoes, due to their ability to bias their inheritance toward super-Mendelian rates (>50%). Current technologies use a Cas9 that introduces DNA double-strand breaks ...
Keywords: , , , ,

Intronic gRNAs for the Construction of Minimal Gene Drive Systems

A. Nash, P. Capriotti, A. Hoermann, P. A. Papathanos and N. Windbichler,  Frontiers in Bioengineering and Biotechnology,  10. 2022.
Gene drives are promising tools for the genetic control of insect vector or pest populations. CRISPR-based gene drives are generally highly complex synthetic constructs consisting of multiple transgenes and their respective regulatory elements. This complicates the generation of ...
Keywords: , , , ,

Double-tap gene drive uses iterative genome targeting to help overcome resistance alleles

A. L. Bishop, V. López Del Amo, E. M. Okamoto, Z. Bodai, A. C. Komor and V. M. Gantz,  Nat Commun,  13:2595. 2022.
Homing CRISPR gene drives could aid in curbing the spread of vector-borne diseases and controlling crop pest and invasive species populations due to an inheritance rate that surpasses Mendelian laws. However, this technology suffers from resistance alleles formed when the ...
Keywords: , , , ,

CRISPR/Cas9 mediates efficient site-specific mutagenesis of the odorant receptor co-receptor (Orco) in the malaria vector Anopheles sinensis

Y. Wang, X. F. He, L. Qiao, Z. R. Yu, B. Chen and Z. B. He,  Pest Management Science,  11. 2022.
BACKGROUND Anopheles sinensis is the most widely distributed mosquito species and is the main transmitter of Plasmodium vivax malaria in China. Most previous research has focused on the mechanistic understanding of biological processes in An. sinensis and novel ways of ...
Keywords: , , , ,

A New Approach to Develop Resistant Cultivars Against the Plant Pathogens: CRISPR Drives

M. I. Tek and K. Budak,  Frontiers in Plant Science,  13. 2022.
CRISPR drive is a recent and robust tool that allows durable genetic manipulation of the pest population like human disease vectors such as malaria vector mosquitos. In recent years, it has been suggested that CRISPR drives can also be used to control plant diseases, pests, and ...
Keywords: , , , ,

Biotechnological Road Map for Innovative Weed Management

A. C. S. Wong, K. Massel, Y. Lam, J. Hintzsche and B. S. Chauhan,  Frontiers in Plant Science,  13. 2022.
In most agriculture farmlands, weed management is predominantly reliant on integrated weed management (IWM) strategies, such as herbicide application. However, the overuse and misuse of herbicides, coupled with the lack of novel active ingredients, has resulted in the uptrend of ...
Keywords: , , , ,

Gene drive escape from resistance depends on mechanism and ecology

F. Cook, J. J. Bull and R. Gomulkiewicz,  Evolutionary Applications,  2022.
Abstract Gene drives can potentially be used to suppress pest populations, and the advent of CRISPR technology has made it feasible to engineer them in many species, especially insects. What remains largely unknown for implementations is whether antidrive resistance will evolve ...
Keywords: , , , ,

Modelling homing suppression gene drive in haplodiploid organisms

Y. Liu and J. Champer,  Proceedings of the Royal Society B: Biological Sciences,  289:20220320. 2022.
Gene drives have shown great promise for suppression of pest populations.These engineered alleles can function by a variety of mechanisms, but themost common is the CRISPR homing drive, which converts wild-type allelesto drive alleles in the germline of heterozygotes. Some ...
Keywords: , , , ,

A homing suppression gene drive with multiplexed gRNAs maintains high drive conversion efficiency and avoids functional resistance alleles

E. Yang, M. Metzloff, A. M. Langmuller, X. J. Xu, A. G. Clark, P. W. Messer and J. Champer,  G3-Genes Genomes Genetics,  13. 2022.
Gene drives are engineered alleles that can bias inheritance in their favor, allowing them to spread throughout a population. They could potentially be used to modify or suppress pest populations, such as mosquitoes that spread diseases. CRISPR/Cas9 homing drives, which copy ...
Keywords: , , , ,

Cas9-mediated maternal-effect and derived resistance alleles in a gene-drive strain of the African malaria vector mosquito, Anopheles gambiae

R. Carballar-Lejarazú, T. Tushar, T. B. Pham and A. A. James,  Genetics,  2022.
CRISPR/Cas9 technologies are important tools for the development of gene-drive systems to modify mosquito vector populations to control the transmission of pathogens that cause diseases such as malaria. However, one of the challenges for current Cas9-based drive systems is their ...
Keywords: , , , ,

Expanding the flexibility of genome editing approaches for population control of the malaria mosquito

N. Kranjc,  Imperial College London-PhD,  2022.
Discovery and adaptation of CRISPR-Cas systems for genome editing have allowed us to gain an efficient and yet simple tool for genetic manipulation in various fields of molecular biology and biotechnology. One of the most promising applications is the use of CRISPR-Cas9 ...
Keywords: , , , ,

CRISPR-mediated knockout of cardinal and cinnabar eye pigmentation genes in the western tarnished plant bug

C. C. Heu, R. J. Gross, K. P. Le, D. M. LeRoy, B. Fan, J. J. Hull, C. S. Brent and J. A. Fabrick,  Scientific Reports,  12. 2022.
The western tarnished plant bug, Lygus hesperus, is a key hemipteran pest of numerous agricultural, horticultural, and industrial crops in the western United States and Mexico. A lack of genetic tools in L. hesperus hinders progress in functional genomics and in developing ...
Keywords: , , , ,

A homing suppression gene drive with multiplexed gRNAs maintains high drive conversion efficiency and avoids functional resistance alleles

E. Yang, M. Metzloff, A. M. Langmüller, X. Xu, A. G. Clark, P. W. Messer and J. Champer,  bioRxiv,  2021.05.27.446071. 2022.
Gene drives are engineered alleles that can bias inheritance in their favor, allowing them to spread throughout a population. They could potentially be used to modify or suppress pest populations, such as mosquitoes that spread diseases. CRISPR/Cas9 homing drives, which copy ...
Keywords: , , , ,

Modelling homing suppression gene drive in haplodiploid organisms

Y. Liu and J. Champer,  bioRxiv,  2021.10.12.464047. 2022.
Gene drives have shown great promise for suppression of pest populations. These engineered alleles can function by a variety of mechanisms, but the most common is the CRISPR homing drive, which converts wild-type alleles to drive alleles in the germline of heterozygotes. Some ...
Keywords: , , , ,

Considerations for homology-based DNA repair in mosquitoes: Impact of sequence heterology and donor template source

J. X. D. Ang, K. Nevard, R. Ireland, D.-K. Purusothaman, S. A. N. Verkuijl, L. Shackleford, E. Gonzalez, M. A. E. Anderson and L. Alphey,  PLOS Genetics,  18:e1010060. 2022.
Author summary The field of genetic control of mosquito vectors has progressed rapidly in recent years, especially in Cas9-based control systems, due to its robustness to elicit a species-specific and dispersive control of mosquito population. To generate a Cas9-based ...
Keywords: , , , ,

Gene drives for vertebrate pest control: realistic spatial modelling of eradication probabilities and times for island mouse populations

A. Birand, P. Cassey, J. V. Ross, J. C. Russell, P. Thomas and T. A. A. Prowse,  Molecular Ecology,  2022.
Abstract Invasive alien species continue to threaten global biodiversity. CRISPR-based gene drives, which can theoretically spread through populations despite imparting a fitness cost, could be used to suppress or eradicate pest populations. We develop an individual-based, ...
Keywords: , , , ,

Could we delete diseases passed down through our DNA?

E. Rayne,  SYFY,  2022.
What has now been proven possible was once the stuff of science fiction dreams. CRISPR has shown it can successfully edit out detrimental genetic conditions before they are inherited — which could mean the beginning of the end for hereditary diseases. It could also help ...
Keywords: , , , ,

Analysis of a Cas12a-based gene-drive system in budding yeast

I. C. Lewis, Y. Yan and G. C. Finnigan,  Access Microbiol,  3:000301. 2022.
The discovery and adaptation of CRISPR/Cas systems within molecular biology has provided advances across biological research, agriculture and human health. Genomic manipulation through use of a CRISPR nuclease and programmed guide RNAs has become a common and widely accessible ...
Keywords: , , , ,

Scientists expand CRISPR-Cas9 genetic inheritance control in mammals

M. Aguilera,  Phys Org,  2022.
Led by graduate student Alexander Weitzel, Grunwald, Cooper and their colleagues have now succeeded in developing CRISPR-Cas9 inheritance control in male mice by shifting the gene editing window to more closely match the timing of meiosis in both sexes. Their results were ...
Keywords: , , , ,

Insect Allies – Assessment of a Viral Approach to Plant Genome Editing

K. Pfeifer, J. L. Frieß and B. Giese,  Integrated Environmental Assessment and Management,  2022.
The DARPA program Insect Allies has already sparked scientific debate concerning technology assessment-related issues, among which the most prevalent is that of dual use potential. As apart from the issues concerning peaceful applications, the technology also provides the ...
Keywords: , , , ,

Reversing insecticide resistance with allelic-drive in Drosophila melanogaster

B. Kaduskar, R. B. S. Kushwah, A. Auradkar, A. Guichard, M. Li, J. B. Bennett, A. H. F. Julio, J. M. Marshall, C. Montell and E. Bier,  Nature Communications,  13:291. 2022.
A recurring target-site mutation identified in various pests and disease vectors alters the voltage gated sodium channel (vgsc) gene (often referred to as knockdown resistance or kdr) to confer resistance to commonly used insecticides, pyrethroids and DDT. The ubiquity of kdr ...
Keywords: , , , ,

Meiotic Cas9 expression mediates gene conversion in the male and female mouse germline

A. J. Weitzel, H. A. Grunwald, C. Weber, R. Levina, V. M. Gantz, S. M. Hedrick, E. Bier and K. L. Cooper,  PLOS Biology,  19:e3001478. 2021.
Highly efficient gene conversion systems have the potential to facilitate the study of complex genetic traits using laboratory mice and, if implemented as a “gene drive,” to limit loss of biodiversity and disease transmission caused by wild rodent populations. We previously ...
Keywords: , , , ,

Scientists Used CRISPR Gene Editing to Choose the Sex of Mouse Pups

S. Fan,  Singuarity Hub,  2021.
“Do you want a boy or a girl?” can be an awkward question.But in certain circles, it’s a question that’s asked every day. Take agriculture. In a perfect world, most cows would only birth females. Chicks would grow up to be all hens. “Sexing” a farm animal when ...
Keywords: , , , ,

Exploiting a Y chromosome-linked Cas9 for sex selection and gene drive

S. Gamez, D. Chaverra-Rodriguez, A. Buchman, N. P. Kandul, S. C. Mendez-Sanchez, J. B. Bennett, C. H. Sánchez, T. Yang, I. Antoshechkin, J. E. Duque, P. A. Papathanos, J. M. Marshall and O. S. Akbari,  Nature Communications,  7202. 2021.
CRISPR-based genetic engineering tools aimed to bias sex ratios, or drive effector genes into animal populations, often integrate the transgenes into autosomal chromosomes. However, in species with heterogametic sex chromsomes (e.g. XY, ZW), sex linkage of endonucleases could be ...
Keywords: , , , ,

Genomic insertion locus and Cas9 expression in the germline affect CRISPR/Cas9-based gene drive performance in the yellow fever mosquito Aedes aegypti

W. R. Reid, J. Lin, A. E. Williams, R. Juncu, K. E. Olson and A. W. E. Franz,  bioRxiv,  2021.12.08.471839. 2021.
The yellow fever mosquito Aedes aegypti is a major vector of arthropod-borne viruses, including dengue, chikungunya, and Zika. A novel approach to mitigate arboviral infections is to generate mosquitoes refractory to infection by overexpressing antiviral effector molecules. Such ...
Keywords: , , , ,

Gene editing used to create all-male or all-female litters of mice

J. Goodyer,  Science Focus,  2021.
As males are unable to produce milk or lay eggs, the ability to breed cows and hens that produce all-female litters is likely to be high on most poultry and dairy farmers’ wish lists. Now, scientists at the Francis Crick Institute and the University of Kent have come a step ...
Keywords: , , , ,

Genetic conversion of a split-drive into a full-drive element

G. Terradas, J. B. Bennett, Z. Li, J. M. Marshall and E. Bier,  bioRxiv,  2021.12.05.471291. 2021.
Gene-drive systems offer an important new avenue for spreading beneficial traits into wild populations. Their core components, Cas9 and guide RNA (gRNA), can either be linked within a single cassette (full gene drive, fGD) or provided in two separate elements (split gene drive, ...
Keywords: , , , ,

Gene editing used to create all-male or all-female mice litters

A. Reis,  European Scientist,  2021.
Researchers from the Francis Crick Institute and the University of Kent used gene-editing technologies to create male-only and female-only mice litters, according to a study published in Nature Communications (1). The authors also suggested ways in which this method could be used ...
Keywords: , , , ,

Gene-editing used to create single sex mice litters

The Francis Crick Institute,  Phys Org,  2021.
Scientists at the Francis Crick Institute, in collaboration with University of Kent, have used gene editing technology to create female-only and male-only mice litters with 100% efficiency. This proof of principle study, published in Nature Communications today, demonstrates how ...
Keywords: , , , ,

Single-sex mice litters were created with 100% efficiency using gene editing.

R. Silman,  Brinkwire,  2021.
The Francis Crick Institute, in partnership with the University of Kent, has employed gene editing technology to construct 100% efficient female-only and male-only mouse litters. This proof-of-concept study, which was published today (Friday, December 3rd, 2021) in Nature ...
Keywords: , , , ,

Lab animals: Gene-editing technology is used to create female-only and male-only mice litters

todayuknews,  Today UK News,  2021.
Single-sex litters of mice — comprising only either female or male pups — have been produced by means of so-called CRISPR-Cas9 gene editing technology. The technique, developed by experts at the Francis Crick Institute and the University of Kent, works by inactivating embryos ...
Keywords: , , , ,

Gene editing produces all-male or all-female litters of mice

E. Pennisi,  Science,  2021.
In some farmers’ ideal world, cows would birth only females, sows would bear no boars, and chicks would all grow up to be hens. Such sex ratios would stop them from killing millions of male animals, which don’t produce eggs or milk. Now, scientists are a step closer to this ...
Keywords: , , , ,

CRISPR-Cas9 effectors facilitate generation of single-sex litters and sex-specific phenotypes

C. Douglas, V. Maciulyte, J. Zohren, D. M. Snell, S. K. Mahadevaiah, O. A. Ojarikre, P. J. I. Ellis and J. M. A. Turner,  Nature Communications,  12:6926. 2021.
Animals are essential genetic tools in scientific research and global resources in agriculture. In both arenas, a single sex is often required in surplus. The ethical and financial burden of producing and culling animals of the undesired sex is considerable. Using the mouse as a ...
Keywords: , , , ,

CRISPR gene-drive systems based on Cas9 nickases promote super-Mendelian inheritance in Drosophila

V. Lopez del Amo, S. Sanz Juste and V. M. Gantz,  bioRxiv,  2021.12.01.470847. 2021.
CRISPR-based gene drive systems can be used to modify entire wild populations due to their ability to bias their own inheritance towards super-Mendelian rates (>100%). Current gene drives contain a Cas9 and a gRNA gene inserted at the location targeted by the gRNA. These ...
Keywords: , , , ,

Applying functional genomics to the study of lamprey development and sea lamprey population control

J. R. York, R. E. Thresher and D. W. McCauley,  Journal of Great Lakes Research,  47:S639-S649. 2021.
Lampreys are one of the few survivors of an ancient lineage of jawless vertebrates and have become an important study organism in numerous disciplines in the biological sciences, including evolutionary biology, embryology, ecology, physiology and biomedicine. At the same time, ...
Keywords: , , , ,

Temperature-Inducible Precision-Guided Sterile Insect Technique

N. P. Kandul, J. R. Liu and O. S. Akbari,  CRISPR Journal,  14. 2021.