Keywords: CRISPR

Intronic gRNAs for the Construction of Minimal Gene Drive Systems

A. Nash, P. Capriotti, A. Hoermann, P. A. Papathanos and N. Windbichler,  Frontiers in Bioengineering and Biotechnology,  10. 2022.
Gene drives are promising tools for the genetic control of insect vector or pest populations. CRISPR-based gene drives are generally highly complex synthetic constructs consisting of multiple transgenes and their respective regulatory elements. This complicates the generation of ...
Keywords: , , , , , ,

Double-tap gene drive uses iterative genome targeting to help overcome resistance alleles

A. L. Bishop, V. López Del Amo, E. M. Okamoto, Z. Bodai, A. C. Komor and V. M. Gantz,  Nat Commun,  13:2595. 2022.
Homing CRISPR gene drives could aid in curbing the spread of vector-borne diseases and controlling crop pest and invasive species populations due to an inheritance rate that surpasses Mendelian laws. However, this technology suffers from resistance alleles formed when the ...
Keywords: , , , , , ,

A New Approach to Develop Resistant Cultivars Against the Plant Pathogens: CRISPR Drives

M. I. Tek and K. Budak,  Frontiers in Plant Science,  13. 2022.
CRISPR drive is a recent and robust tool that allows durable genetic manipulation of the pest population like human disease vectors such as malaria vector mosquitos. In recent years, it has been suggested that CRISPR drives can also be used to control plant diseases, pests, and ...
Keywords: , , , , , ,

Biotechnological Road Map for Innovative Weed Management

A. C. S. Wong, K. Massel, Y. Lam, J. Hintzsche and B. S. Chauhan,  Frontiers in Plant Science,  13. 2022.
In most agriculture farmlands, weed management is predominantly reliant on integrated weed management (IWM) strategies, such as herbicide application. However, the overuse and misuse of herbicides, coupled with the lack of novel active ingredients, has resulted in the uptrend of ...
Keywords: , , , , , ,

Gene drive escape from resistance depends on mechanism and ecology

F. Cook, J. J. Bull and R. Gomulkiewicz,  Evolutionary Applications,  2022.
Abstract Gene drives can potentially be used to suppress pest populations, and the advent of CRISPR technology has made it feasible to engineer them in many species, especially insects. What remains largely unknown for implementations is whether antidrive resistance will evolve ...
Keywords: , , , , , ,

Modelling homing suppression gene drive in haplodiploid organisms

Y. Liu and J. Champer,  Proceedings of the Royal Society B: Biological Sciences,  289:20220320. 2022.
Gene drives have shown great promise for suppression of pest populations.These engineered alleles can function by a variety of mechanisms, but themost common is the CRISPR homing drive, which converts wild-type allelesto drive alleles in the germline of heterozygotes. Some ...
Keywords: , , , , , ,

Cas9-mediated maternal-effect and derived resistance alleles in a gene-drive strain of the African malaria vector mosquito, Anopheles gambiae

R. Carballar-Lejarazú, T. Tushar, T. B. Pham and A. A. James,  Genetics,  2022.
CRISPR/Cas9 technologies are important tools for the development of gene-drive systems to modify mosquito vector populations to control the transmission of pathogens that cause diseases such as malaria. However, one of the challenges for current Cas9-based drive systems is their ...
Keywords: , , , , , ,

Expanding the flexibility of genome editing approaches for population control of the malaria mosquito

N. Kranjc,  Imperial College London-PhD,  2022.
Discovery and adaptation of CRISPR-Cas systems for genome editing have allowed us to gain an efficient and yet simple tool for genetic manipulation in various fields of molecular biology and biotechnology. One of the most promising applications is the use of CRISPR-Cas9 ...
Keywords: , , , , , ,

CRISPR-mediated knockout of cardinal and cinnabar eye pigmentation genes in the western tarnished plant bug

C. C. Heu, R. J. Gross, K. P. Le, D. M. LeRoy, B. Fan, J. J. Hull, C. S. Brent and J. A. Fabrick,  Scientific Reports,  12. 2022.
The western tarnished plant bug, Lygus hesperus, is a key hemipteran pest of numerous agricultural, horticultural, and industrial crops in the western United States and Mexico. A lack of genetic tools in L. hesperus hinders progress in functional genomics and in developing ...
Keywords: , , , , , ,

A homing suppression gene drive with multiplexed gRNAs maintains high drive conversion efficiency and avoids functional resistance alleles

E. Yang, M. Metzloff, A. M. Langmüller, X. Xu, A. G. Clark, P. W. Messer and J. Champer,  bioRxiv,  2021.05.27.446071. 2022.
Gene drives are engineered alleles that can bias inheritance in their favor, allowing them to spread throughout a population. They could potentially be used to modify or suppress pest populations, such as mosquitoes that spread diseases. CRISPR/Cas9 homing drives, which copy ...
Keywords: , , , , , ,

Modelling homing suppression gene drive in haplodiploid organisms

Y. Liu and J. Champer,  bioRxiv,  2021.10.12.464047. 2022.
Gene drives have shown great promise for suppression of pest populations. These engineered alleles can function by a variety of mechanisms, but the most common is the CRISPR homing drive, which converts wild-type alleles to drive alleles in the germline of heterozygotes. Some ...
Keywords: , , , , , ,

Considerations for homology-based DNA repair in mosquitoes: Impact of sequence heterology and donor template source

J. X. D. Ang, K. Nevard, R. Ireland, D.-K. Purusothaman, S. A. N. Verkuijl, L. Shackleford, E. Gonzalez, M. A. E. Anderson and L. Alphey,  PLOS Genetics,  18:e1010060. 2022.
Author summary The field of genetic control of mosquito vectors has progressed rapidly in recent years, especially in Cas9-based control systems, due to its robustness to elicit a species-specific and dispersive control of mosquito population. To generate a Cas9-based ...
Keywords: , , , , , ,

Gene drives for vertebrate pest control: realistic spatial modelling of eradication probabilities and times for island mouse populations

A. Birand, P. Cassey, J. V. Ross, J. C. Russell, P. Thomas and T. A. A. Prowse,  Molecular Ecology,  2022.
Abstract Invasive alien species continue to threaten global biodiversity. CRISPR-based gene drives, which can theoretically spread through populations despite imparting a fitness cost, could be used to suppress or eradicate pest populations. We develop an individual-based, ...
Keywords: , , , , , ,

Could we delete diseases passed down through our DNA?

E. Rayne,  SYFY,  2022.
What has now been proven possible was once the stuff of science fiction dreams. CRISPR has shown it can successfully edit out detrimental genetic conditions before they are inherited — which could mean the beginning of the end for hereditary diseases. It could also help ...
Keywords: , , , , , ,

Analysis of a Cas12a-based gene-drive system in budding yeast

I. C. Lewis, Y. Yan and G. C. Finnigan,  Access Microbiol,  3:000301. 2022.
The discovery and adaptation of CRISPR/Cas systems within molecular biology has provided advances across biological research, agriculture and human health. Genomic manipulation through use of a CRISPR nuclease and programmed guide RNAs has become a common and widely accessible ...
Keywords: , , , , , ,

Scientists expand CRISPR-Cas9 genetic inheritance control in mammals

M. Aguilera,  Phys Org,  2022.
Led by graduate student Alexander Weitzel, Grunwald, Cooper and their colleagues have now succeeded in developing CRISPR-Cas9 inheritance control in male mice by shifting the gene editing window to more closely match the timing of meiosis in both sexes. Their results were ...
Keywords: , , , , , ,

Insect Allies – Assessment of a Viral Approach to Plant Genome Editing

K. Pfeifer, J. L. Frieß and B. Giese,  Integrated Environmental Assessment and Management,  2022.
The DARPA program Insect Allies has already sparked scientific debate concerning technology assessment-related issues, among which the most prevalent is that of dual use potential. As apart from the issues concerning peaceful applications, the technology also provides the ...
Keywords: , , , , , ,

Reversing insecticide resistance with allelic-drive in Drosophila melanogaster

B. Kaduskar, R. B. S. Kushwah, A. Auradkar, A. Guichard, M. Li, J. B. Bennett, A. H. F. Julio, J. M. Marshall, C. Montell and E. Bier,  Nature Communications,  13:291. 2022.
A recurring target-site mutation identified in various pests and disease vectors alters the voltage gated sodium channel (vgsc) gene (often referred to as knockdown resistance or kdr) to confer resistance to commonly used insecticides, pyrethroids and DDT. The ubiquity of kdr ...
Keywords: , , , , , ,

Meiotic Cas9 expression mediates gene conversion in the male and female mouse germline

A. J. Weitzel, H. A. Grunwald, C. Weber, R. Levina, V. M. Gantz, S. M. Hedrick, E. Bier and K. L. Cooper,  PLOS Biology,  19:e3001478. 2021.
Highly efficient gene conversion systems have the potential to facilitate the study of complex genetic traits using laboratory mice and, if implemented as a “gene drive,” to limit loss of biodiversity and disease transmission caused by wild rodent populations. We previously ...
Keywords: , , , , , ,

Scientists Used CRISPR Gene Editing to Choose the Sex of Mouse Pups

S. Fan,  Singuarity Hub,  2021.
“Do you want a boy or a girl?” can be an awkward question.But in certain circles, it’s a question that’s asked every day. Take agriculture. In a perfect world, most cows would only birth females. Chicks would grow up to be all hens. “Sexing” a farm animal when ...
Keywords: , , , , , ,

Exploiting a Y chromosome-linked Cas9 for sex selection and gene drive

S. Gamez, D. Chaverra-Rodriguez, A. Buchman, N. P. Kandul, S. C. Mendez-Sanchez, J. B. Bennett, C. H. Sánchez, T. Yang, I. Antoshechkin, J. E. Duque, P. A. Papathanos, J. M. Marshall and O. S. Akbari,  Nature Communications,  7202. 2021.
CRISPR-based genetic engineering tools aimed to bias sex ratios, or drive effector genes into animal populations, often integrate the transgenes into autosomal chromosomes. However, in species with heterogametic sex chromsomes (e.g. XY, ZW), sex linkage of endonucleases could be ...
Keywords: , , , , , ,

Genomic insertion locus and Cas9 expression in the germline affect CRISPR/Cas9-based gene drive performance in the yellow fever mosquito Aedes aegypti

W. R. Reid, J. Lin, A. E. Williams, R. Juncu, K. E. Olson and A. W. E. Franz,  bioRxiv,  2021.12.08.471839. 2021.
The yellow fever mosquito Aedes aegypti is a major vector of arthropod-borne viruses, including dengue, chikungunya, and Zika. A novel approach to mitigate arboviral infections is to generate mosquitoes refractory to infection by overexpressing antiviral effector molecules. Such ...
Keywords: , , , , , ,

Gene editing used to create all-male or all-female litters of mice

J. Goodyer,  Science Focus,  2021.
As males are unable to produce milk or lay eggs, the ability to breed cows and hens that produce all-female litters is likely to be high on most poultry and dairy farmers’ wish lists. Now, scientists at the Francis Crick Institute and the University of Kent have come a step ...
Keywords: , , , , , ,

Genetic conversion of a split-drive into a full-drive element

G. Terradas, J. B. Bennett, Z. Li, J. M. Marshall and E. Bier,  bioRxiv,  2021.12.05.471291. 2021.
Gene-drive systems offer an important new avenue for spreading beneficial traits into wild populations. Their core components, Cas9 and guide RNA (gRNA), can either be linked within a single cassette (full gene drive, fGD) or provided in two separate elements (split gene drive, ...
Keywords: , , , , , ,

Gene editing used to create all-male or all-female mice litters

A. Reis,  European Scientist,  2021.
Researchers from the Francis Crick Institute and the University of Kent used gene-editing technologies to create male-only and female-only mice litters, according to a study published in Nature Communications (1). The authors also suggested ways in which this method could be used ...
Keywords: , , , , , ,

Gene-editing used to create single sex mice litters

The Francis Crick Institute,  Phys Org,  2021.
Scientists at the Francis Crick Institute, in collaboration with University of Kent, have used gene editing technology to create female-only and male-only mice litters with 100% efficiency. This proof of principle study, published in Nature Communications today, demonstrates how ...
Keywords: , , , , , ,

Single-sex mice litters were created with 100% efficiency using gene editing.

R. Silman,  Brinkwire,  2021.
The Francis Crick Institute, in partnership with the University of Kent, has employed gene editing technology to construct 100% efficient female-only and male-only mouse litters. This proof-of-concept study, which was published today (Friday, December 3rd, 2021) in Nature ...
Keywords: , , , , , ,

Lab animals: Gene-editing technology is used to create female-only and male-only mice litters

todayuknews,  Today UK News,  2021.
Single-sex litters of mice — comprising only either female or male pups — have been produced by means of so-called CRISPR-Cas9 gene editing technology. The technique, developed by experts at the Francis Crick Institute and the University of Kent, works by inactivating embryos ...
Keywords: , , , , , ,

Gene editing produces all-male or all-female litters of mice

E. Pennisi,  Science,  2021.
In some farmers’ ideal world, cows would birth only females, sows would bear no boars, and chicks would all grow up to be hens. Such sex ratios would stop them from killing millions of male animals, which don’t produce eggs or milk. Now, scientists are a step closer to this ...
Keywords: , , , , , ,

CRISPR-Cas9 effectors facilitate generation of single-sex litters and sex-specific phenotypes

C. Douglas, V. Maciulyte, J. Zohren, D. M. Snell, S. K. Mahadevaiah, O. A. Ojarikre, P. J. I. Ellis and J. M. A. Turner,  Nature Communications,  12:6926. 2021.
Animals are essential genetic tools in scientific research and global resources in agriculture. In both arenas, a single sex is often required in surplus. The ethical and financial burden of producing and culling animals of the undesired sex is considerable. Using the mouse as a ...
Keywords: , , , , , ,

CRISPR gene-drive systems based on Cas9 nickases promote super-Mendelian inheritance in Drosophila

V. Lopez del Amo, S. Sanz Juste and V. M. Gantz,  bioRxiv,  2021.12.01.470847. 2021.
CRISPR-based gene drive systems can be used to modify entire wild populations due to their ability to bias their own inheritance towards super-Mendelian rates (>100%). Current gene drives contain a Cas9 and a gRNA gene inserted at the location targeted by the gRNA. These ...
Keywords: , , , , , ,

Applying functional genomics to the study of lamprey development and sea lamprey population control

J. R. York, R. E. Thresher and D. W. McCauley,  Journal of Great Lakes Research,  47:S639-S649. 2021.
Lampreys are one of the few survivors of an ancient lineage of jawless vertebrates and have become an important study organism in numerous disciplines in the biological sciences, including evolutionary biology, embryology, ecology, physiology and biomedicine. At the same time, ...
Keywords: , , , , , ,

Temperature-Inducible Precision-Guided Sterile Insect Technique

N. P. Kandul, J. R. Liu and O. S. Akbari,  CRISPR Journal,  14. 2021.
Releases of sterile males are the gold standard for many insect population control programs, and precise sex sorting to remove females prior to male releases is essential to the success of these operations. To advance traditional methods for scaling the generation of sterile ...
Keywords: , , , , , ,

Modeling the efficacy of CRISPR gene drive for schistosomiasis control

R. E. Grewelle, J. Perez-Saez, J. Tycko, E. K. O. Namigai, C. G. Rickards and G. A. De Leo,  bioRxiv,  2021.10.29.466423. 2021.
CRISPR gene drives could revolutionize the control of infectious diseases by accelerating the spread of engineered traits that limit parasite transmission in wild populations. While much effort has been spent developing gene drives in mosquitoes, gene drive technology in molluscs ...
Keywords: , , , , , ,

Genome Editing Tools and Gene Drives: A Brief Overview (1st ed.).

R. Mudziwapasi, R. Chekera, C. Z. Ncube, I. Shoko, B. Ncube, T. Moyo, J. G. Chimbo, J. Dube, F. F. Mashiri, M. A. Mubani, D. Maruta, C. Chimbo, M. Masuku, R. Shoko, R. P. Nyamusamba and F. N. Jomane,  CRC Press,  2021.
Genome-editing methods are becoming routine tools for molecular and cell biologists. Such tools include ZFNs, CRISPR, megaTALs and TALENs. These tools are revolutionizing the creation of precisely manipulated genomes to modify the characteristics of organisms or cells. ...
Keywords: , , , , , ,

Modeling homing suppression gene drive in haplodiploid organisms

Y. Liu and J. Champer,  bioRxiv,  2021.10.12.464047. 2021.
Gene drives have shown great promise for suppression of pest populations. These engineered alleles can function by a variety of mechanisms, but the most common is the CRISPR homing drive, which converts wild-type alleles to drive alleles in the germline of heterozygotes. Some ...
Keywords: , , , , , ,

Towards CRISPR/Cas9-based gene drive in the diamondback moth Plutella xylostella

X. Xu, T. Harvey-Samuel, H. Siddiqui, J. Ang, M. A. E. Anderson, C. Reitmayer, E. Lovett, P. T. Leftwich, M. You and L. Alphey,  bioRxiv,  2021.10.05.462963. 2021.
Promising to provide powerful genetic control tools, gene drives have been constructed in multiple dipterans, yeast and mice, for the purposes of population elimination or modification. However, it remains unclear whether these techniques can be applied to lepidopterans. Here, we ...
Keywords: , , , , , ,

Resistance to a CRISPR-based gene drive at an evolutionarily conserved site is revealed by mimicking genotype fixation

S. Fuchs, W. T. Garrood, A. Beber, A. Hammond, R. Galizi, M. Gribble, G. Morselli, T.-Y. J. Hui, K. Willis, N. Kranjc, A. Burt, A. Crisanti and T. Nolan,  PLOS Genetics,  17. 2021.
Author summary Gene drives have the potential to be applied as a novel control strategy of disease-transmitting mosquitoes, by spreading genetic traits that suppress or modify the target population. Many gene drive elements work by recognising and cutting a specific target ...
Keywords: , , , , , ,

Scientists use gene editing tool to target mosquito-spread disease

Medical Research Council,  Phys Org,  2021.
Advances in genome editing have allowed the development of genetic insect control methods, which could be highly effective and are species-specific. The results have been published in Scientific Reports. Scientists showed that a method involving a gene editing tool called ...
Keywords: , , , , , ,

Mosquitoes Sterilized by CRISPR Powered Precision System

A. A. Sarkar,  Genetic Engineering & Biotechnology News,  2021.
Each year millions around the world are infected by dengue, chikungunya, and Zika viruses. The principal culprit behind the transmission of these deadly diseases is the mosquito vector, Aedes aegypti. Conventional methods of pest control have so far fallen short. To curb the ...
Keywords: , , , , , ,

New precision-guided sterile insect technique designed to control disease-spreading mosquitoes

E. Henderson,  News Medical Life Sciences,  2021.
Leveraging advancements in CRISPR-based genetic engineering, researchers at the University of California San Diego have created a new system that restrains populations of mosquitoes that infect millions each year with debilitating diseases. The new precision-guided sterile ...
Keywords: , , , , , ,

Genetic engineering tech promises to sterilize disease-spreading mosquitoes

B. Hays,  UPI,  2021.
Inspired by improvements in CRISPR-based genetic engineering, scientists have developed a more precise insect sterilization system to curtail, or even eliminate, disease-spreading Aedes aegypti mosquito populations. The so-called "precision-guided sterile insect technique," or ...
Keywords: , , , , , ,

Genetic Engineering Technology Promises To Sterilize Disease-Spreading Mosquito Populations

D. Gyllhem,  VIGOURTIMES,  2021.
Inspired by improvements in CRISPR-based genetic engineering, scientists have developed a more precise insect sterilization system to curtail, or even eliminate, disease-spreading Aedes aegypti mosquito populations. The so-called “precision-guided sterile insect technique,” ...
Keywords: , , , , , ,

New Technology Designed to Genetically Control Disease-spreading Mosquitoes

M. Aguilera,  UC San Diego News Center,  2021.
Leveraging advancements in CRISPR-based genetic engineering, researchers at the University of California San Diego have created a new system that restrains populations of mosquitoes that infect millions each year with debilitating diseases. An illustration by study coauthor ...
Keywords: , , , , , ,

Suppressing mosquito populations with precision guided sterile males

M. Li, T. Yang, M. Bui, S. Gamez, T. Wise, N. P. Kandul, J. Liu, L. Alcantara, H. Lee, J. R. Edula, R. Raban, Y. Zhan, Y. Wang, N. DeBeaubien, J. Chen, H. M. Sánchez C, J. B. Bennett, I. Antoshechkin, C. Montell, J. M. Marshall and O. S. Akbari,  Nature Communications,  12:5374. 2021.
The mosquito Aedes aegypti is the principal vector for arboviruses including dengue/yellow fever, chikungunya, and Zika virus, infecting hundreds of millions of people annually. Unfortunately, traditional control methodologies are insufficient, so innovative control methods are ...
Keywords: , , , , , ,

Gene drive escape from resistance depends on mechanism and ecology

F. Cook, J. J. Bull and R. Gomulkiewicz,  bioRxiv,  2021.08.30.458221. 2021.
Gene drives can potentially be used to suppress pest populations, and the advent of CRISPR technology has made it feasible to engineer them in many species, especially insects. What remains largely unknown for implementations is whether anti-drive resistance will evolve to block ...
Keywords: , , , , , ,

Versatile Applications of the CRISPR/Cas Toolkit in Plant Pathology and Disease Management

M. S. Wheatley and Y. N. Yang,  Phytopathology,  111:1080-1090. 2021.
New tools and advanced technologies have played key roles in facilitating basic research in plant pathology and practical approaches for disease management and crop health. Recently. the CRISPR/Cas (clustered regularly interspersed short palindromic repeats/CRISPR-associated) ...
Keywords: , , , , , ,

Cas9-Mediated Gene-Editing in the Black-Legged Tick, Ixodes Scapularis, by Embryo Injection and ReMOT Control.

A. a. P. Sharma, Michael N. and Reyes, Jeremiah B. and Chana, Randeep and Yim, Won C. and Heu, Chan C. and Kim, Donghun and Chaverra-Rodriguez, Duverney and Rasgon, Jason L. and Harrell, Robert A. and Nuss, Andrew B. and Gulia-Nuss, Monika,,  Cell Reports,  2021.