Centromere drive: model systems and experimental progress

D. Dudka and M. A. Lampson,  Chromosome Research,  2022.

Centromeres connect chromosomes and spindle microtubules to ensure faithful chromosome segregation. Paradoxically, despite this conserved function, centromeric DNA evolves rapidly and centromeric proteins show signatures of positive selection. The centromere drive hypothesis proposes that centromeric DNA can act like a selfish genetic element and drive non-Mendelian segregation during asymmetric female meiosis. Resulting fitness costs lead to genetic conflict with the rest of the genome and impose a selective pressure for centromeric proteins to adapt by suppressing the costs. Here, we describe experimental model systems for centromere drive in yellow monkeyflowers and mice, summarize key findings demonstrating centromere drive, and explain molecular mechanisms. We further discuss efforts to test if centromeric proteins are involved in suppressing drive-associated fitness costs, highlight a model for centromere drive and suppression in mice, and put forth outstanding questions for future research.


More related to this: