Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9-mediated mutagenesis of the multiple edematous wings gene induces muscle weakness and flightlessness in Bactrocera dorsalis (Diptera: Tephritidae)

Zheng, WL, Q.; Sun, H.; Ali, M. W.; Zhang, H.,  Insect Molecular Biology,  28:222-234. 2019.

The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) system is a versatile, efficient and heritable gene editing tool that can be useful for genome engineering. Bactrocera dorsalis (Hendel) is a major pest of agriculture that causes great economic losses. We used the B. dorsalis multiple edematous wings (Bdmew) gene as the target gene to explore the effectiveness of CRISPR/Cas9 for B. dorsalis genome manipulation. We studied the physiological functions of the Bdmew gene, particularly those related to muscle development. Site-specific genome editing was feasible using direct microinjection of specific guide RNA and the Cas9-plasmid into B. dorsalis embryos. Mutation frequencies ranged from 12.1 to 30.2% in the injected generation. Mosaic G0, with the mew mutation, was heritable to the next generation. The G1 displayed a series of defective phenotypes including muscle weakness, flightlessness, failure to eclose, wing folds and unbalanced movement. These results demonstrated that CRISPR/Cas9 can act as a highly specific, efficient, heritable tool for genome manipulation in B. dorsalis and this has significance for gene function research and genetic control of pests. The Bdmew gene possesses key functions in muscle development of B. dorsalis. Bdmew mutations cause a series of serious defects by interfering with muscle development and may provide a means for controlling B. dorsalis via a gene-based method such as gene drive.