Comparative analysis of regions with distorted segregation in three diploid populations of potato

Manrique-Carpintero, NCC, J. J.; Veilleux, R. E.; Buell, C. R.; Douches, D. S.,  G3-Genes Genomes Genetics,  6:2617-2628. 2016.

Genes associated with gametic and zygotic selection could underlie segregation distortion, observed as alterations of expected Mendelian genotypic frequencies in mapping populations. We studied highly dense genetic maps based on single nucleotide polymorphisms to elucidate the genetic nature of distorted segregation in potato. Three intra-and interspecific diploid segregating populations were used. DRH and D84 are crosses between the sequenced doubled monoploid DM 1-3 516 R44 Solanum tuberosum Group Phureja and either RH89-039-16 S. tuberosum or 84SD22, a S. tuberosum x S. chacoense hybrid. MSX902 is an interspecific cross between 84SD22 and Ber83 S. berthaultii x 2 x species mosaic. At the 0.05 significance level, 21%, 57%, and 51% of the total markers mapped in DRH, D84, and MSX902 exhibited distorted segregation, respectively. Segregation distortion regions for DRH were located on chromosomes 9 and 12; for D84 on chromosomes 2, 3, 4, 6, 7, and 8; and on chromosomes 1, 2, 7, 9, and 12 for MSX902. In general, each population had unique segregation distortion regions and directions of distortion. Interspecific crosses showed greater levels of distorted segregation and lower recombination rates as determined from the male parents. The different genomic regions where the segregation distortion regions occurred in the three populations likely reflect unique genetic combinations producing distorted segregation.