Dramatically diverse Schizosaccharomyces pombe wtf meiotic drivers all display high gamete-killing efficiency

M. A. Bravo Núñez, I. M. Sabbarini, M. T. Eickbush, Y. Liang, J. J. Lange, A. M. Kent and S. E. Zanders,  PLOS Genetics,  16:e1008350. 2020.

During gametogenesis, the two gene copies at a given locus, known as alleles, are each transmitted to 50% of the gametes (e.g. sperm). However, some alleles cheat so that they are found in more than the expected 50% of gametes, often at the expense of fertility. This selfish behavior is known as meiotic drive. Some members of the wtf gene family in the fission yeast Schizosaccharomyces pombe kill the gametes (spores) that do not inherit them, resulting in meiotic drive favoring the wtf allele. Other wtf genes act as suppressors of drive. However, the wtf gene family is diverse and only a small subset of the genes has been characterized. Here we analyze the functions of other members of this gene family and found eight new drivers as well as three new suppressors of drive. Surprisingly, we find that drive is relatively insensitive to changes in wtf gene sequence as highly diverged wtf genes execute gamete killing with similar efficiency. Finally, we also find that the expression and localization of some Wtf proteins are distinct from those of known drivers and suppressors, suggesting that these proteins may have non-meiotic drive functions.