Red queen’s race: rapid evolutionary dynamics of an expanding family of meiotic drive factors and their hpRNA suppressors

J. Vedanayagam, C.-J. Lin and E. C. Lai,  bioRxiv,  2021.08.05.454923. 2021.

Meiotic drivers are a class of selfish genetic elements that are widespread across eukaryotes. Their activities are often detrimental to organismal fitness and thus trigger drive suppression to ensure fair segregation during meiosis. Accordingly, their existence is frequently hidden in genomes, and their molecular functions are little known. Here, we trace evolutionary steps that generated the Dox meiotic drive system in Drosophila simulans (Dsim), which distorts male:female balance (sex-ratio) by depleting male progeny. We show that Dox emerged via stepwise mobilization and acquisition of portions of multiple D. melanogaster genes, including the sperm chromatin packaging gene protamine. Moreover, we reveal novel Dox homologs in Dsim and massive, recent, amplification of Dox superfamily genes specifically on X chromosomes of its closest sister species D. mauritiana (Dmau) and D. sechellia (Dsech). The emergence of Dox superfamily genes is tightly associated with 1.688 family satellite repeats that flank de novo genomic copies. In concert, we find coordinated emergence and diversification of autosomal hairpin RNA/siRNAs loci that target subsets of Dox superfamily genes across simulans clade species. Finally, an independent set of protamine amplifications the Y chromosome of D. melanogaster indicates that protamine genes are frequent and recurrent players in sex chromosome dynamics. Overall, we reveal fierce genetic arms races between meiotic drive factors and siRNA suppressors associated with recent speciation.Competing Interest StatementThe authors have declared no competing interest.


More related to this:

A sex-ratio meiotic drive system in Drosophila simulans. II: An X-linked distorter

Sex-ratio distortion caused by meiotic drive in mosquitos

The organization and evolution of the Responder satellite in species of the Drosophila melanogaster group: dynamic evolution of a target of meiotic drive

A sex-ratio meiotic drive system in Drosophila simulans. I: An autosomal suppressors

Organization of the sex-ratio meiotic drive region in Drosophila simulans