Repeat mediated excision of gene drive elements for restoring wild-type populations

Pratima R Chennuri, Josef Zapletal, Raquel D Monfardini, Martial Loth Ndeffo-Mbah, Zach N Adelman, Kevin M Myles,  bioRxiv,  2023.

We demonstrate here that single strand annealing (SSA) repair can be co-opted for the precise autocatalytic excision of a drive element. Although SSA is not the predominant form of DNA repair in eukaryotic organisms, we increased the likelihood of its use by engineering direct repeats at sites flanking the drive allele, and then introducing a double-strand DNA break (DSB) at a second endonuclease target site encoded within the drive allele. We have termed this technology Repeat Mediated Excision of a Drive Element (ReMEDE). Incorporation of ReMEDE into the previously described mutagenic chain reaction (MCR) gene drive, targeting the yellow gene of Drosophila melanogaster, replaced drive alleles with wild-type alleles demonstrating proof-of-principle. Although the ReMEDE system requires further research and development, the technology has a number of attractive features as a gene drive mitigation strategy, chief among these the potential to restore a wild-type population without releasing additional transgenic organisms or large-scale environmental engineering efforts.

More related to this:

Germline excision of transgenes in Aedes aegypti by homing endonucleases

The potential of genomics for restoring ecosystems and biodiversity

Catch me if you can: A spatial model for a brake-driven gene drive reversal

Meiotic drive at the Myotonic Dystrophy locus

Responder (Rsp) alleles in the Segregation Distorter (SD) system of meiotic drive in Drosophila may represent a complex family of satellite repeat sequences