After years of success in reducing the global malaria burden, the World Health Organization (WHO) recently reported that progress has stalled. Over 90% of malaria deaths world-wide occurred in the WHO African Region. New tools are needed to regain momentum and further decrease the burden of malaria. Gene drive, an emerging technology that can enhance the inheritance of beneficial genes, offers potentially transformative solutions for overcoming these challenges. Gene drives may decrease disease transmission by interfering with the growth of the malaria parasite in the mosquito vector or reducing mosquito reproductive capacity. Like other emerging technologies, development of gene drive products faces technical and non-technical challenges and uncertainties. In 2018, to begin addressing such challenges, a multidisciplinary group of international experts published comprehensive recommendations for responsible testing and implementation of gene drive-modified mosquitoes to combat malaria in Sub-Saharan Africa. Considering requirements for containment, efficacy and safety testing, monitoring, stakeholder engagement and authorization, as well as policy and regulatory issues, the group concluded that gene drive products for malaria can be tested safely and ethically, but that this will require substantial coordination, planning, and capacity development. The group emphasized the importance of co-development and co-ownership of products by in-country scientists.
https://www.geneconvenevi.org/wp-content/uploads/2020/04/Sustainability-2.png300300Academic Web Pageshttps://www.geneconvenevi.org/wp-content/uploads/2024/08/fnih-rm-mid.pngAcademic Web Pages2018-01-21 00:00:002024-08-12 15:38:52Using gene drive technologies to control vector-borne infectious diseases