A comprehensive overview of the existing microbial symbionts in mosquito vectors: An important tool for impairing pathogentransmission

V. Vandana, M. P. Kona, J. Kumar, O. P. Singh and K. C. Pandey,  Experimental Parasitology,  243. 2022.

The emergence of drug-resistant parasites and/or insecticide-resistant mosquito vectors necessitates developing alternative tools that either supplement or replace the conventional malaria control strategies. Trans-infecting the mosquito vector with symbionts that can either compete with a targeted pathogen or manipulate the host biology by reducing its vectorial capacity could be a promising and innovative biological approach for the control of infectious diseases This idea could be utilized to develop a novel and efficient vector control strategy; symbionts are dispersed into vector populations to reduce their ability to transmit human pathogens. Here, we reported the natural existence of Microsporidian (an obligate fungus) in the field-collected An. stephensi mosquito. However, laboratory-reared An. stephensi and An. culicifacies did not exhibit microsporidian infection. Similarly, 16s rRNA PCR identified -1kb amplicons in laboratory-reared An. stephensi and An. culicifacies, indicating the presence of naturally residing different bacterial species. DNA sequencing of these amplicons revealed the identities of different bacteria which are not well-characterized in terms of plasmodia-interaction activity in the Indian malaria vector. This article summarizes an overview of the previously studied microbial symbionts for their role in Plasmodium transmission along with a list of new or unexplored symbionts in the disease transmitting mosquito vectors. The summarized information could be utilized to explore such microbial symbionts for their role in Plasmodium-transmission biology in-depth and implementation in the malaria control interventions globally.

More related to this: