A critical component of meiotic drive in Neurospora is located near a chromosome rearrangement

Harvey, AMR, D. G.; Groskreutz, K. M.; Kuntz, D. R.; Sharp, K. J.; Shiu, P. K. T.; Hammond, T. M.,  Genetics,  197:1165-1179. 2014.

Neurospora fungi harbor a group of meiotic drive elements known as Spore killers (Sk). Spore killer-2 (Sk-2) and Spore killer-3 (Sk-3) are two Sk elements that map to a region of suppressed recombination. Although this recombination block is limited to crosses between Sk and Sk-sensitive (Sk(S)) strains, its existence has hindered Sk characterization. Here we report the circumvention of this obstacle by combining a classical genetic screen with next-generation sequencing technology and three-point crossing assays. This approach has allowed us to identify a novel locus called rfk-1, mutation of which disrupts spore killing by Sk-2. We have mapped rfk-1 to a 45-kb region near the right border of the Sk-2 element, a location that also harbors an 11-kb insertion (Sk-2(INS1)) and part of a >220-kb inversion (Sk-2(INV1)). These are the first two chromosome rearrangements to be formally identified in a Neurospora Sk element, providing evidence that they are at least partially responsible for Sk-based recombination suppression. Additionally, the proximity of these chromosome rearrangements to rfk-1 (a critical component of the spore-killing mechanism) suggests that they have played a key role in the evolution of meiotic drive in Neurospora.