Keywords: Evolution

What should we call evolution driven by genetic engineering? Genetic welding, says researcher

Cell Press,  Phys Org,  2023.
With CRISPR-Cas9 technology, humans can now rapidly change the evolutionary course of animals or plants by inserting genes that can easily spread through entire populations. Evolutionary geneticist Asher Cutter proposes that we call this evolutionary meddling “genetic ...
Keywords: , , ,

Synthetic gene drives as an anthropogenic evolutionary force

A. D. Cutter,  Trends in Genetics,  2023.
Genetic drive represents a fundamental evolutionary force that can exact profound change to the genetic composition of populations by biasing allele transmission. Herein I propose that the use of synthetic homing gene drives, the human-mediated analog of endogenous genetic ...
Keywords: , , ,

Rescue by gene swamping as a gene drive deployment strategy

K. D. Harris and G. Greenbaum,  bioRxiv,  2022.03.08.483503. 2022.
Gene drives are genetic constructs that can spread deleterious alleles with potential application to population suppression of harmful species. Given that a gene drive can potentially spill over to other populations or even other species, control measures and fail-safes ...
Keywords: , , ,

Discovery of 119-Million-Year-Old “Selfish” Genes Casts Doubt on Established Evolution Beliefs

Stowers Institute for Medical Research,  SciTechDaily,  2022.
Meiotic drivers, a kind of selfish gene, are indeed selfish. They are found in virtually all species’ genomes, including humans, and unjustly transfer their genetic material to more than half of their offspring, resulting in infertility and impaired organism health. Their ...
Keywords: , , ,

Discovery of 119-Million year old Selfish Genes Casts Doubt on Established Evolution Beliefs

Stowers Institute for Medical Research,  Stowers Institute for Medical Research,  2022.
Meiotic drivers, a kind of selfish gene, are indeed selfish. They are found in virtually all species’ genomes, including humans, and unjustly transfer their genetic material to more than half of their offspring, resulting in infertility and impaired organism health. Their ...
Keywords: , , ,

The wtf meiotic driver gene family has unexpectedly persisted for over 100 million years

M. De Carvalho, G. S. Jia, A. Nidamangala Srinivasa, R. B. Billmyre, Y. H. Xu, J. J. Lange, I. M. Sabbarini, L. L. Du and S. E. Zanders,  eLife,  11. 2022.
Meiotic drivers are selfish elements that bias their own transmission into more than half of the viable progeny produced by a driver+/driver- heterozygote. Meiotic drivers are thought to exist for relatively short evolutionary timespans because a driver gene or gene family is ...
Keywords: , , ,

Unbalanced selection: the challenge of maintaining a social polymorphism when a supergene is selfish

A. G. Tafreshi, S. P. Otto and M. Chapuisat,  Philos Trans R Soc Lond B Biol Sci,  377:20210197. 2022.
Supergenes often have multiple phenotypic effects, including unexpected detrimental ones, because recombination suppression maintains associations among co-adapted alleles but also allows the accumulation of recessive deleterious mutations and selfish genetic elements. Yet, ...
Keywords: , , ,

Mendel’s First Law: partisan interests and the parliament of genes

C. Veller,  Heredity,  2022.
Mendel’s First Law requires explanation because of the possibility of ‘meiotic drivers’, genes that distort fair segregation for selfish gain. The suppression of drive, and the restoration of fair segregation, is often attributed to genes at loci unlinked to the drive ...
Keywords: , , ,

Epistatic selection on a selfish Segregation Distorter supergene: drive, recombination, and genetic load

B. Navarro-Dominguez, C.-H. Chang, C. L. Brand, C. A. Muirhead, D. C. Presgraves and A. M. Larracuente,  eLife,  11:e78981. 2022.
In this work, we investigate the evolution and genomic consequences of an autosomal, multilocus, male meiotic drive system, Segregation Distorter (SD) in the fruit fly, Drosophila melanogaster. In African populations, the predominant SD chromosome variant, SD-Mal, is ...
Keywords: , , ,

The evolutionary significance of meiotic drive

J. B. Searle and F. P.-M. de Villena,  Heredity,  2022.
In this essay, we will focus on‘true meiotic drive’ where the distorted transmission does arise within meiosis itself (Zanders and Unckless2019),specifically in females. Here, the non-transmission of one of the products of meiotic division is inherent in the gametogenic ...
Keywords: , , ,

Cytoplasmic incompatibility in hybrid zones: infection dynamics and resistance evolution

E. S. Røed and J. Engelstädter,  Journal of Evolutionary Biology,  2021.
Cytoplasmic incompatibility is an endosymbiont-induced mating incompatibility common in arthropods. Unidirectional cytoplasmic incompatibility impairs crosses between infected males and uninfected females, whereas bidirectional cytoplasmic incompatibility occurs when two host ...
Keywords: , , ,

Rapid evolutionary dynamics of an expanding family of meiotic drive factors and their hpRNA suppressors

J. Vedanayagam, C. J. Lin and E. C. Lai,  Nature Ecology and Evolution,  2021.
Meiotic drivers are a class of selfish genetic elements whose existence is frequently hidden due to concomitant suppressor systems. Accordingly, we know little of their evolutionary breadth and molecular mechanisms. Here, we trace the evolution of the Dox meiotic drive system in ...
Keywords: , , ,

Evolutionary robustness of killer meiotic drives

P. G. Madgwick and J. B. Wolf,  Evolution Letters,  2021.
A meiotic driver is a selfish genetic element that interferes with the process of meiosis to promote its own transmission. The most common mechanism of interference is gamete killing, where the meiotic driver kills gametes that do not contain it. A killer meiotic driver is ...
Keywords: , , ,

Invasion and maintenance of meiotic drivers in populations of ascomycete fungi

I. Martinossi-Allibert, C. Veller, S. L. Ament-Velasquez, A. A. Vogan, C. Rueffler and H. Johannesson,  Evolution,  20. 2021.
Meiotic drivers (MDs) are selfish genetic elements that are able to become overrepresented among the products of meiosis. This transmission advantage makes it possible for them to spread in a population even when they impose fitness costs on their host organisms. Whether an MD ...
Keywords: , , ,

Genetic pest management and the background genetics of release strains

P. T. Leftwich, L. G. Spurgin, T. Harvey-Samuel, C. J. E. Thomas, L. C. Paladino, M. P. Edgington and L. Alphey,  Philosophical Transactions of the Royal Society B: Biological Sciences,  376:20190805. 2020.
We discuss issues around strain selection and the potential consequences of such introgression. We conclude that such introgression is probably harmless in almost all circumstances, and could, in theory, provide specific additional benefits to the release programme. We outline ...
Keywords: , , ,

Wolbachia strain wAlbB maintains high density and dengue inhibition following introduction into a field population of Aedes aegypti

N. A. Ahmad, M.-V. Mancini, T. H. Ant, J. Martinez, G. M. R. Kamarul, W. A. Nazni, A. A. Hoffmann and S. P. Sinkins,  Philosophical Transactions of the Royal Society B: Biological Sciences,  376:20190809. 2020.
Here, wAlbB-carrying Ae. aegypti collected from the field 20 months after the cessation of releases showed no reduction in Wolbachia density or tissue distribution changes compared to a wAlbB laboratory colony. The wAlbB strain continued to induce complete unidirectional ...
Keywords: , , ,

Gene Drive Dynamics in Natural Populations: The Importance of Density Dependence, Space, and Sex

S. Dhole, A. L. Lloyd and F. Gould,  Annual Review of Ecology, Evolution, and Systematics,  51:505-531. 2020.
The spread of synthetic gene drives is often discussed in the context of panmictic populations connected by gene flow and described with simple deterministic models. Under such assumptions, an entire species could be altered by releasing a single individual carrying an invasive ...
Keywords: , , ,

Vector genetics, insecticide resistance and gene drives: An agent-based modeling approach to evaluate malaria transmission and elimination

P. Selvaraj, E. A. Wenger, D. Bridenbecker, N. Windbichler, J. R. Russell, J. Gerardin, C. A. Bever and M. Nikolov,  PloS Computational Biology,  16:21. 2020.
Here, we investigate the reduced efficacy of current vector control measures in the presence of insecticide resistance and evaluate the likelihood of achieving local malaria elimination using gene drive mosquitoes released into a high transmission setting alongside other vector ...
Keywords: , , ,

The Y Chromosome as a Battleground for Intragenomic Conflict

D. Bachtrog,  Trends in Genetics,  2020.
Recurrent sex chromosome drive can have profound ecological, evolutionary, and cellular impacts and account for unique features of sex chromosomes.
Keywords: , , ,

Recessive Z-linked lethals and the retention of haplotype diversity in a captive butterfly population

I. J. Saccheri, S. Whiteford, C. J. Yung and A. E. van't Hof,  Heredity,  2020.
Sex chromosomes are predicted to harbour elevated levels of sexually antagonistic variation due to asymmetries in the heritability of recessive traits in the homogametic versus heterogametic sex.
Keywords: , , ,

Winning the tug-of-war between effector gene design and pathogen evolution in vector population replacement strategies

Marshall, J. M., R. R. Raban, N. P. Kandul, J. R. Edula, T. M. León and O. S. Akbari,  Frontiers in Genetics,  10:1072. 2019.
While efforts to control malaria with available tools have stagnated, and arbovirus outbreaks persist around the globe, the advent of clustered regularly interspaced short palindromic repeat (CRISPR)-based gene editing has provided exciting new opportunities for genetics-based ...
Keywords: , , ,

Effects of a male meiotic driver on male and female transcriptomes in the house mouse

A. Lindholm, A. Sutter, S. Kunzel, D. Tautz and H. Rehrauer,  Proceedings of the Royal Society B-Biological Sciences,  286:1-8. 2019.
Not all genetic loci follow Mendel's rules, and the evolutionary consequences of this are not yet fully known. Genomic conflict involving multiple loci is a likely outcome, as restoration of Mendelian inheritance patterns will be selected for, and sexual conflict may also arise ...
Keywords: , , ,

Does meiotic drive alter male mate preference?

S. R. Finnegan, L. Nitsche, M. Mondani, M. F. Camus, K. Fowler and A. Pomiankowski,  Behavioral Ecology,  13:194-201. 2019.
Male mate preferences have been demonstrated across a range of species, including the Malaysian stalk-eyed fly, Teleopsis dalmanni. This species is subject to sex-ratio (SR), an X-linked male meiotic driver, which causes the dysfunction of Y-sperm and the production of all-female ...
Keywords: , , ,

The association between mitochondrial genetic variation and reduced colony fitness in an invasive wasp

J. Dobelmann, A. Alexander, J. W. Baty, N. J. Gemmell, M. A. M. Gruber, O. Quinn, T. Wenseleers and P. J. Lester,  Molecular Ecology,  28:3324-3338. 2019.
Despite the mitochondrion's long-recognized role in energy production, mitochondrial DNA (mtDNA) variation commonly found in natural populations was assumed to be effectively neutral. However, variation in mtDNA has now been increasingly linked to phenotypic variation in life ...
Keywords: , , ,

A century of bias in genetics and evolution

L. D. Hurst,  Heredity,  123:33-44. 2019.
Mendel proposed that the heritable material is particulate and that transmission of alleles is unbiased. An assumption of unbiased transmission was necessary to show how variation can be preserved in the absence of selection, so overturning an early objection to Darwinism. In the ...
Keywords: , , ,

Gene-drive-mediated extinction is thwarted by population structure and evolution of sib mating

J. J. Bull, C. H. Remien and S. M. Krone,  Evolution Medicine and Public Health,  2019:66-81. 2019.
Genetic engineering combined with CRISPR technology has developed to the point that gene drives can, in theory, be engineered to cause extinction in countless species. Success of extinction programs now rests on the possibility of resistance evolution, which is largely unknown. ...
Keywords: , , ,

CRISPR gene drive efficiency and resistance rate is highly heritable with no common genetic loci of large effect

Champer, JW, Z. X.; Luthra, A.; Reeves, R.; Chung, J.; Liu, C.; Lee, Y. L.; Liu, J. X.; Yang, E.; Messer, P. W.; Clark, A. G.,  Genetics,  212:333-341. 2019.
Gene drives could allow for control of vector-borne diseases by directly suppressing vector populations or spreading genetic payloads designed to reduce pathogen transmission. Clustered regularly interspaced short palindromic repeat (CRISPR) homing gene drives work by cleaving ...
Keywords: , , ,

Variability in the durability of CRISPR-Cas immunity

Chabas, HN, A.; Meaden, S.; Westra, E. R.; Tremblay, D. M.; Pradier, L.; Lion, S.; Moineau, S.; Gandon, S.,  Philosophical Transactions of the Royal Society B-Biological Sciences,  374:1-9. 2019.
The durability of host resistance is challenged by the ability of pathogens to escape the defence of their hosts. Understanding the variability in the durability of host resistance is of paramount importance for designing more effective control strategies against infectious ...
Keywords: , , ,

Spatial structure undermines parasite suppression by gene drive cargo

Bull, JJR, Christopher H.; Gomulkiewicz, Richard; Krone, Stephen M.,  PeerJ,  7:e7921. 2019.
Gene drives may be used in two ways to curtail vectored diseases. Both involve engineering the drive to spread in the vector population. One approach uses the drive to directly depress vector numbers, possibly to extinction. The other approach leaves intact the vector population ...
Keywords: , , ,

Pest demography critically determines the viability of synthetic gene drives for population control

K. E. Wilkins, T. A. A. Prowse, P. Cassey, P. Q. Thomas and J. V. Ross,  Mathematical Biosciences,  305:160-169. 2018.
Synthetic gene drives offer a novel solution for the control of invasive alien species. CRISPR-based gene drives can positively bias their own inheritance, and comprise a DNA sequence that is replicated by homologous recombination. Since gene drives can be positioned to silence ...
Keywords: , , ,

Genetics and genomics of an unusual selfish sex ratio distortion in an insect

Hamilton, PTH, C. N.; Curtis, C. I.; Perlman, S. J.,  Current Biology,  28:3864-3870. 2018.
Diverse selfish genetic elements have evolved the ability to manipulate reproduction to increase their transmission, and this can result in highly distorted sex ratios [1]. Indeed, one of the major explanations for why sex determination systems are so dynamic is because they are ...
Keywords: , , ,

B Chromosomes in populations of mammals revisited

Vujoševi?, MR, Marija; Blagojevi?, Jelena,  Genes,  9:487. 2018.
The study of B chromosomes (Bs) started more than a century ago, while their presence in mammals dates since 1965. As the past two decades have seen huge progress in application of molecular techniques, we decided to throw a glance on new data on Bs in mammals and to review them. ...
Keywords: , , ,

Gene drives do not always increase in frequency: from genetic models to risk assessment

de Jong, TJ,  Journal Fur Verbraucherschutz Und Lebensmittelsicherheit-Journal of Consumer Protection and Food Safety,  12:299-307. 2017.
Homing genes encode endonucleases that make a double stranded break in the DNA, destroying a target site on the homologous chromosome. When the cell repairs the break the homing allele is copied, converting a heterozygote into a homozygote. This results in gene drive (GD), an ...
Keywords: , , ,

The Trojan Female Technique for pest control: a candidate mitochondrial mutation confers low male fertility across diverse nuclear backgrounds in Drosophila melanogaster

D. K. Dowling, D. M. Tompkins and N. J. Gemmell,  Evolutionary Applications,  8:8710880. 2015.
The Trojan Female Technique (TFT) was recently proposed as a prospective approach to biological pest control. However, applicability of the TFT relies on mitochondrial mutations whose male-sterilizing effects are general across nuclear genomic contexts. We test this assumption, ...
Keywords: , , ,

B chromosomes and genome size in flowering plants

Trivers, RB, A.; Palestis, B. G.,  Genome,  47:1-8. 2004.
B chromosomes are extra chromosomes found in some, but not all, individuals within a species, often maintained by giving themselves an advantage in transmission, i.e. they drive. Here we show that the presence of B chromosomes correlates to and varies strongly and positively with ...
Keywords: , , ,

The distribution of B chromosomes across species

Palestis, BGT, R.; Burt, A.; Jones, R. N.,  Cytogenetic and Genome Research,  106:151-158. 2004.
In this review we look at the broad picture of how B chromosomes are distributed across a wide range of species. We review recent studies of the factors associated with the presence of Bs across species, and provide new analyses with updated data and additional variables. The ...
Keywords: , , ,

Site-specific selfish genes as tools for the control and genetic engineering of natural populations

Burt, A,  Proceedings of the Royal Society B-Biological Sciences,  270:921-928. 2003.
Site-specific selfish genes exploit host functions to copy themselves into a defined target DNA sequence, and include homing endonuclease genes, group II introns and some LINE-like transposable elements. If such genes can be engineered to target new host sequences, then they can ...
Keywords: , , ,

Adaptation for horizontal transfer in a homing endonuclease

Koufopanou, VG, M. R.; Burt, A.,  Molecular Biology and Evolution,  19:239-246. 2002.
Selfish genes of no function other than self-propagation are susceptible to degeneration if they become fixed in a population. and regular transfer to new species may be the only means for their long-term persistence. To test this idea we surveyed 24 species of yeast for VDE, a ...
Keywords: , , ,

Can transposable elements be used to drive disease refractoriness genes into vector populations?

M. G. Kidwell and J. M. C. Ribeiro,  Parasitology Today,  8:325-329. 1992.
A number of biological procedures are currently being considered as alternatives to insecticide-based methods for the control of insect vectors of disease. Among these are the adaptation of various genetic mechanisms to drive genes of interest, such as refractoriness to malaria ...
Keywords: , , ,