Molecular Biology Reports

CRISPR/Cas9: a cutting-edge solution for combatting the fall armyworm, Spodoptera frugiperda

Gouda, M.N.R., Jeevan, H., Shashank, H.G.,  Molecular Biology Reports,  51. 2023.


The utilization of CRISPR/Cas9 in Spodoptera frugiperda, commonly known as fall armyworm, presents a groundbreaking avenue for pest management. With its ability to precisely modify the insect’s genome, CRISPR/Cas9 offers innovative strategies to combat this destructive pest. The application of CRISPR/Cas9 in S. frugiperda holds immense potential. It enables the identification and functional analysis of key genes associated with its behavior, development, and insecticide resistance. This knowledge can unveil novel target sites for more effective and specific insecticides. Additionally, CRISPR/Cas9 can facilitate the development of population control methods by disrupting vital genes essential for survival. However, challenges such as off-target effects and the efficient delivery of CRISPR/Cas9 components remain. Addressing these obstacles is vital to ensure accurate and reliable results. Furthermore, ethical considerations, biosafety protocols, and regulatory frameworks must be integral to the adoption of this technology. Looking forward, CRISPR/Cas9-based gene drive systems hold the potential to promulgate desirable genetic traits within S. frugiperda populations, offering a sustainable and eco-friendly approach. This could curtail their reproductive capabilities or make them more susceptible to certain interventions. In conclusion, CRISPR/Cas9 presents a transformative platform for precise and targeted pest management in S. frugiperda. By deciphering the insect’s genetic makeup and developing innovative strategies, we can mitigate the devastating impact of fall armyworm on agriculture while ensuring environmental sustainability.


More related to this: