Maternal transmission ratio distortion at the mouse Om locus results from meiotic drive at the second meiotic division

Wu, GMH, L. P.; Han, Z. M.; Gao, S. R.; Latham, K. E.; de Villena, F. P. M.; Sapienza, C.,  Genetics,  170:327-334. 2005.

We have observed maternal transmission ratio distortion (TRD) in favor of DDK alleles at the Ovum mutant (Om) locus on mouse chromosome I I among the offspring of (C57BL/6 X DDK) F, females and C57BL/6 males. Although significant lethality occurs in this backcross (similar to 50%), differences in the level of TRD found in recombinant vs. nonrecombinant chromosomes among offspring argue that TRD is due to nonrandom segregation of chromatids at the second meiotic division, i.e., true meiotic drive. We tested this hypothesis directly, by determining the centromere and Om genotypes of individual chromatids in zygote stage embryos. We found similar levels of TRD in favor of DDK alleles at Om in the female pronucleus and TRD in favor of C57BL/6 alleles at Om in the second polar body. In those embryos for which complete dyads have been reconstructed, TRD was present only in those inheriting heteromorphic dyads. These results demonstrate that meiotic drive occurs at MII and that preferential death of one genotypic class of embryo does not play a large role in the TRD.