Meiotic behavior, transmission and active genes of B chromosomes in the cichlid Astatotilapia latifasciata: new clues about nature, evolution and maintenance of accessory elements

A. L. Cardoso, N. B. Venturelli, I. da Cruz, F. M. de Sá Patroni, D. de Moraes, R. A. de Oliveira, R. Benavente and C. Martins,  Molecular Genetics and Genomics,  2022.

Supernumerary B chromosomes (Bs) are dispensable genetic elements widespread in eukaryotes and are poorly understood mainly in relation to mechanisms of maintenance and transmission. The cichlid Astatotilapia latifasciata can harbor Bs in a range of 0 (named B -) and 1-2 (named B +). The B in A. latifasciata is rich in several classes of repetitive DNA sequences, contains protein coding genes, and affects hosts in diverse ways, including sex-biased effects. To advance in the knowledge about the mechanisms of maintenance and transmission of B chromosomes in A. latifasciata, here, we studied the meiotic behavior in males and transmission rates of A. latifasciata B chromosome. We also analyzed structurally and functionally the predicted B chromosome copies of the cell cycle genes separin-like, tubb1-like and kif11-like. We identified in the meiotic structure relative to the B chromosome the presence of proteins associated with Synaptonemal Complex organization (SMC3, SYCP1 and SYCP3) and found that the B performs self-pairing. These data suggest that isochromosome formation was a step during B chromosome evolution and this element is in a stage of diversification of the two arms keeping the self-pairing behavior to protect the A chromosome complement of negative effects of recombination. Moreover, we observed no occurrence of B-drive and confirmed the presence of cell cycle genes copies in the B chromosome and their transcription in encephalon, muscle and gonads, which can indicates beneficial effects to hosts and contribute to B maintenance.


More related to this: