Small-Molecule Control of Super-Mendelian Inheritance in Gene Drives
Small-Molecule Control of Super-Mendelian Inheritance in Gene Drives
Tags: CRISPR, Gene drive, Gene drive synthetic, Replicator/site directed nucleaseV. López Del Amo, B. S. Leger, K. J. Cox, S. Gill, A. L. Bishop, G. D. Scanlon, J. A. Walker, V. M. Gantz and A. Choudhary, Cell Reports, 31:107841. 2020.
Summary Synthetic CRISPR-based gene-drive systems have tremendous potential in public health and agriculture, such as for fighting vector-borne diseases or suppressing crop pest populations. These elements can rapidly spread in a population by breaching the inheritance limit of 50% dictated by Mendel’s law of gene segregation, making them a promising tool for population engineering. However, current technologies lack control over their propagation capacity, and there are important concerns about potential unchecked spreading. Here, we describe a gene-drive system in Drosophila that generates an analog inheritance output that can be tightly and conditionally controlled to between 50% and 100%. This technology uses a modified SpCas9 that responds to a synthetic, orally available small molecule, fine-tuning the inheritance probability. This system opens a new avenue to feasibility studies for spatial and temporal control of gene drives using small molecules.