To what extent do different types of sex ratio distorters interfere?

Engelstadter, JM, H.; Hurst, G. D. D.,  Evolution,  58:2382-2386. 2004.

Within the Diptera, two different selfish genetic elements are known to cause the production of female-biased sex ratios: maternally inherited bacteria that kill male zygotes (male-killers), and X chromosomes causing the degeneration of Y-bearing sperm in males (meiotic drive). We here develop a mathematical model for the dynamics of these two sex-ratio distorters where they co-occur. We show that X chromosome meiotic drive elements can be expected to substantially lower the equilibrium frequency of male-killers and can even lead to their extinction. Conversely, male-killers can also decrease the equilibrium frequency of X drivers and cause their extinction. Thus, we predict that there will be some complementarity in the incidence of X chromosome meiotic drive and male-killing in natural populations, with a lower than expected number of species bearing both elements.