Using gene drives to control malaria
Using gene drives to control malaria
Tags: Anopheles, CRISPR, Gene drive synthetic, Population modification/replacementA. Fell, Daily News, 2021.
A group of UC scientists led by Greg Lanzaro, professor of pathology, microbiology and immunology in the UC Davis School of Veterinary Medicine, recently completed an analysis of a strategy aimed at eliminating malaria from Africa using genetically engineered mosquitoes. Lanzaro’s lab is part of the UC Irvine Malaria Initiative. The laboratories of Anthony James at UC Irvine and Ethan Bier at UC San Diego engineered mosquitoes with synthetic genes that render them incapable of transmitting the malaria parasite and coupled these genes with a CRISPR-Cas9 gene drive to promote their spread into malaria vector populations in Africa. The idea is to ‘drive’ the new malaria-resistance genes into the mosquito population at a much higher rate than could occur naturally.