
Keywords: population modification
![]() |
Natural and Engineered Sex Ratio Distortion in InsectsA. Compton and Z. Tu, Frontiers in Ecology and Evolution, 10. 2022.![]() Insects have evolved highly diverse genetic sex-determination mechanisms and a relatively balanced male to female sex ratio is generally expected. However, selection may shift the optimal sex ratio while meiotic drive and endosymbiont manipulation can result in sex ratio ... Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() |
Testing non-autonomous antimalarial gene drive effectors using self-eliminating drivers in the African mosquito vector Anopheles gambiaeD. A. Ellis, G. Avraam, A. Hoermann, C. A. S. Wyer, Y. X. Ong, G. K. Christophides and N. Windbichler, PLOS Genetics, 18:e1010244. 2022.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Author summary Gene drive is a method that allows the genetic modification of entire populations of harmful organisms. Their application to tackle invasive species, agricultural pests or insect disease vectors has been suggested. For example, they could reduce the capacity of ... Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() |
Spatial modelling for population replacement of mosquito vectors at continental scaleN. J. Beeton, A. Wilkins, A. Ickowicz, K. R. Hayes and G. R. Hosack, PLOS Computational Biology, 18:e1009526. 2022.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Malaria is one of the deadliest vector-borne diseases in the world. Researchers are developing new genetic and conventional vector control strategies to attempt to limit its burden. Novel control strategies require detailed safety assessment to ensure responsible and successful ... Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Wolbachia interacts with the microbiome to shape fitness-associated traits during seasonal adaptation in Drosophila melanogasterL. P. Henry, M. Fernandez, S. Wolf and J. Ayroles, bioRxiv, 2022.05.31.494239. 2022.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() The microbiome contributes to many different host traits, but its role in host adaptation remains enigmatic. The fitness benefits of the microbiome often depend on ecological conditions, but fluctuations in both the microbiome and environment modulate these fitness benefits. ... Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() ![]() |
Wolbachia 16S rRNA haplotypes detected in wild Anopheles stephensi in eastern EthiopiaE. Waymire, S. Duddu, S. Yared, D. Getachew, D. Dengela, S. R. Bordenstein, M. Balkew, S. Zohdy, S. R. Irish and T. E. Carter, Parasites and Vectors, 15:178. 2022.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() About two out of three Ethiopians are at risk of malaria, a disease caused by the parasites Plasmodium falciparum and Plasmodium vivax. Anopheles stephensi, an invasive vector typically found in South Asia and the Middle East, was recently found to be distributed across eastern ... Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Local adaptation of Aedes aegypti mosquitoes to Wolbachia-induced fitness costsP. A. Ross and A. A. Hoffmann, bioRxiv, 2022.05.06.490959. 2022.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Aedes aegypti mosquito eggs can remain quiescent for many months before hatching, allowing populations to persist through unfavorable conditions. Aedes aegypti infected with the Wolbachia strain wMel have been released in tropical and subtropical regions for dengue control. wMel ... Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() |
MIT Researchers Propose Using Genetically Modified Mice to Fight Lyme DiseaseK. Perrotte, Field and Stream, 2022.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() In Massachusetts, researchers at MIT are proposing an experiment that would involve releasing genetically engineered mice into the native mouse population to ultimately reduce the prevalence of Lyme disease.Nantucket Island is the area proposed for the study, which has been years ... Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() |
Wolbachia endosymbionts in two Anopheles species indicates independent acquisitions and lack of prophage elementsS. Quek, L. Cerdeira, C. L. Jeffries, S. Tomlinson, T. Walker, G. L. Hughes and E. Heinz, Microbial Genomics, 8. 2022.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Wolbachia is a genus of obligate bacterial endosymbionts that infect a diverse range of arthropod species as well as filarial nematodes, with its single described species, Wolbachia pipientis, divided into several ‘supergroups’ based on multilocus sequence typing. Wolbachia ... Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() ![]() ![]() |
Aedes aegypti abundance and insecticide resistance profiles in the applying Wolbachia to eliminate dengue trialW. Tantowijoyo, S. K. Tanamas, I. Nurhayati, S. Setyawan, N. Budiwati, I. Fitriana, I. Ernesia, D. S. Wardana, E. Supriyati, E. Arguni, Y. Meitika, E. Prabowo, B. Andari, B. R. Green, L. Hodgson, E. Rancès, P. A. Ryan, S. L. O'Neill, K. L. Anders, M. R. A, PLOS Neglected Tropical Diseases, 16:e0010284. 2022.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() The Applying Wolbachia to Eliminate Dengue (AWED) trial was a parallel cluster randomised trial that demonstrated Wolbachia (wMel) introgression into Ae. aegypti populations reduced dengue incidence. In this predefined substudy, we compared between treatment arms, the relative ... Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() |
A metapopulation approach to identify targets for Wolbachia-based dengue controlA. Reyna-Lara, D. Soriano-Paños, J. H. Arias-Castro, H. J. Martínez and J. Gómez-Gardeñes, Chaos, 32:041105. 2022.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Over the last decade, the release of Wolbachia-infected Aedes aegypti into the natural habitat of this mosquito species has become the most sustainable and long-lasting technique to prevent and control vector-borne diseases, such as dengue, zika, or chikungunya. However, the ... Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() |
Environmental factors influence the local establishment of Wolbachia in Aedes aegypti mosquitoes in two small communities in central Vietnam [version 2]N. T. Hien, D. D. Anh, N. H. Le, N. T. Yen, T. V. Phong, V. S. Nam, T. N. Duong, N. B. Nguyen, D. T. T. Huong, L. Q. Hung, C. N. T. Trinh, N. V. Hoang, V. Q. Mai, L. T. Nghia, N. T. Dong, L. H. Tho, S. Kutcher, T. P. Hurst, J. L. Montgomery, M. Woolfit, E, Gates Open Research, 5:147. 2022.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Background: The wMel strain of Wolbachia has been successfully introduced into Aedes aegypti mosquitoes and subsequently shown to reduce transmission of dengue and other pathogens, under both laboratory and field conditions. Here we describe the entomological outcomes of wMel ... Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() |
UC Davis — Malaria Gene Drive Feasibility AnalysisGood Ventures, Good Ventures, 2022.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Open Philanthropy recommended a grant of $10,248,967 over three years to UC Davis to support subsequent stages of a feasibility analysis of a potential test of gene drives for malaria control on the adjoining West African islands of São Tomé and Príncipe. The work, led by Dr. ... Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() |
Special mosquitos to combat dengue fever in Binh DuongL. Phuong, VN Express, 2022.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Capsules containing mosquito eggs resistant to dengue fever viruses were released in southern Binh Duong's Thu Dau Mot Town on Thursday to help control the disease. The Wolbachia Project in southern Vietnam, conducted by the World Mosquito Program and collaborators, seeks to ... Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() |
Symbionts and gene drive: two strategies to combat vector-borne diseaseG.-H. Wang, J. Du, C. Y. Chu, M. Madhav, G. L. Hughes and J. Champer, Trends in Genetics, 2022.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Mosquitoes bring global health problems by transmitting parasites and viruses such as malaria and dengue. Unfortunately, current insecticide-based control strategies are only moderately effective because of high cost and resistance. Thus, scalable, sustainable, and cost-effective ... Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Spatial modelling for population replacement of mosquito vectors at continental scaleN. J. Beeton, A. Wilkins, A. Ickowicz, K. R. Hayes and G. R. Hosack, bioRxiv, 2021.10.06.463299. 2022.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Malaria is one of the deadliest vector-borne diseases in the world. Researchers are developing new genetic and conventional vector control strategies to attempt to limit its burden. Novel control strategies require detailed safety assessment to ensure responsible and successful ... Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() |
Differential viral RNA methylation contributes to pathogen blocking in Wolbachia-colonized arthropodsT. Bhattacharya, L. Yan, J. M. Crawford, H. Zaher, I. L. G. Newton and R. W. Hardy, PLoS Pathogens, 18:e1010393. 2022.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Arthropod endosymbiont Wolbachia pipientis is part of a global biocontrol strategy to reduce the replication of mosquito-borne RNA viruses such as alphaviruses. We previously demonstrated the importance of a host cytosine methyltransferase, DNMT2, in Drosophila and viral RNA as a ... Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() |
A UC malaria initiative program receives grant for work researching genetically engineered mosquitoesS. Slater, The California Aggie, 2022.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Malaria, a mosquito-borne infectious disease, was discovered in 1880, and has remained widespread in tropical regions around the equator including parts of Africa, Asia and Latin America, resulting in thousands of deaths and a significant blow to economic development in these ... Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Gene drive mosquitoes can aid malaria elimination by retarding Plasmodium sporogonic developmentA. Hoermann, T. Habtewold, P. Selvaraj, G. Del Corsano, P. Capriotti, M. G. Inghilterra, K. M. Temesgen, G. K. Christophides and N. Windbichler, bioRxiv, 2022.02.15.480588. 2022.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Gene drives hold promise for the genetic control of malaria vectors. The development of vector population modification strategies hinges on the availability of effector mechanisms impeding parasite development in transgenic mosquitoes. We augmented a midgut gene of the malaria ... Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() |
C-type lectin 4 regulates broad-spectrum melanization-based refractoriness to malaria parasitesM. L. Simões, Y. Dong, G. Mlambo and G. Dimopoulos, PLOS Biology, 20:e3001515. 2022.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Anopheles gambiae melanization-based refractoriness to the human malaria parasite Plasmodium falciparum has rarely been observed in either laboratory or natural conditions, in contrast to the rodent model malaria parasite Plasmodium berghei that can become completely melanized by ... Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() |
Scientists find transmission chain-breaker, give new hope for fight against malariaANI, ANI, 2022.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() A recent study, published online in 'PLoS Biology', has revealed that blocking a key protein found in Anopheles gambiae mosquitoes -- the principal vector for malaria transmission to humans in Africa could thwart infection with malaria parasites and thus prevent them from ... Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() ![]() ![]() |
Lab-scale characterization and semi-field trials of Wolbachia Strain wAlbB in a Taiwan Wolbachia introgressed Ae. aegypti strainW. L. Liu, H. Y. Yu, Y. X. Chen, B. Y. Chen, S. N. Leaw, C. H. Lin, M. P. Su, L. S. Tsai, Y. Chen, S. H. Shiao, Z. Y. Xi, A. C. C. Jang and C. H. Chen, PLOS Neglected Tropical Diseases, 16:24. 2022.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Author summaryPrior to open field release, new genetic approaches that interfere with mosquito abilities and reduce mosquito population density require progressive evaluation both in the laboratory and contained field trials. Trials in contained outdoor systems are thus an ... Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() ![]() |
Wolbachia: Biological Control Strategy Against Arboviral DiseasesI. Mohanty, A. Rath and R. K. Hazra, Genetically Modified and other Innovative Vector Control Technologies, 2021.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Arboviral diseases like dengue, chikungunya, and Zika are among the major causes of mortality and morbidity in human population. The limited control methods together with lack of antiviral therapies and effective vaccines have paved way for new approaches. One such approach to ... Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() ![]() |
Wolbachia Endosymbiont and Mosquito Vectors, with Emphasis on Lymphatic Filariasis EliminationI. P. Sunish, Genetically Modified and other Innovative Vector Control Technologies, 2021.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Wolbachia are maternally inherited intracellular bacteria, known to alter early development and mitotic processes in their hosts. They are frequently observed as a reproductive parasite, capable of inducing feminization, parthenogenesis, male killing, or cytoplasmic ... Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Genomic insertion locus and Cas9 expression in the germline affect CRISPR/Cas9-based gene drive performance in the yellow fever mosquito Aedes aegyptiW. R. Reid, J. Lin, A. E. Williams, R. Juncu, K. E. Olson and A. W. E. Franz, bioRxiv, 2021.12.08.471839. 2021.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() The yellow fever mosquito Aedes aegypti is a major vector of arthropod-borne viruses, including dengue, chikungunya, and Zika. A novel approach to mitigate arboviral infections is to generate mosquitoes refractory to infection by overexpressing antiviral effector molecules. Such ... Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() |
Gene drive that results in addiction to a temperature-sensitive version of an essential gene triggers population collapse in DrosophilaG. Oberhofer, T. Ivy and B. A. Hay, Proceedings of the National Academy of Sciences, 118:e2107413118. 2021.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() One strategy for population suppression seeks to use gene drive to spread genes that confer conditional lethality or sterility, providing a way of combining population modification with suppression. Stimuli of potential interest could be introduced by humans, such as an otherwise ... Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() |
High-resolution in situ analysis of Cas9 germline transcript distributions in gene-drive Anopheles mosquitoesG. Terradas, A. Hermann, A. A. James, W. McGinnis and E. Bier, G3-Genes Genomes Genetics, 2021.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Gene drives are programmable genetic elements that can spread beneficial traits into wild populations to aid in vector-borne pathogen control. Two different drives have been developed for population modification of mosquito vectors. The Reckh drive (vasa-Cas9) in Anopheles ... Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() ![]() ![]() |
High Temperature Cycles Result in Maternal Transmission and Dengue Infection Differences Between Wolbachia Strains in Aedes aegyptiM. V. Mancini, T. H. Ant, C. S. Herd, J. Martinez, S. M. Murdochy, D. D. Gingell, E. Mararo, P. C. D. Johnson and S. P. Sinkins, mBio, e0025021. 2021.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Environmental factors play a crucial role in the population dynamics of arthropod endosymbionts, and therefore in the deployment of Wolbachia symbionts for the control of dengue arboviruses. The potential of Wolbachia to invade, persist, and block virus transmission depends in ... Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Population replacement gene drive characteristics for malaria elimination in a range of seasonal transmission settings: a modeling studyS. Leung, N. Windbichler, E. Wenger, C. Bever and P. Selvaraj, bioRxiv, 2021.11.01.466856. 2021.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Genetically engineering mosquitoes is a promising new vector control strategy to reinvigorate the fight against malaria in Sub-Saharan Africa. Using an agent-based model of malaria transmission with vector genetics, we examine the impacts of releasing population-replacement gene ... Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Modeling the efficacy of CRISPR gene drive for schistosomiasis controlR. E. Grewelle, J. Perez-Saez, J. Tycko, E. K. O. Namigai, C. G. Rickards and G. A. De Leo, bioRxiv, 2021.10.29.466423. 2021.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() CRISPR gene drives could revolutionize the control of infectious diseases by accelerating the spread of engineered traits that limit parasite transmission in wild populations. While much effort has been spent developing gene drives in mosquitoes, gene drive technology in molluscs ... Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
A decade of stability for wMel Wolbachia in natural Aedes aegypti populationsP. A. Ross, K. L. Robinson, Q. Yang, A. G. Callahan, T. L. Schmidt, J. K. Axford, M. P. Coquilleau, K. M. Staunton, M. Townsend, S. A. Ritchie, M.-J. Lau, X. Gu and A. A. Hoffmann, bioRxiv, 2021.10.27.466190. 2021.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Mosquitoes carrying Wolbachia endosymbionts are being released in many countries for arbovirus control. The wMel strain of Wolbachia blocks Aedes-borne virus transmission and can spread throughout mosquito populations by inducing cytoplasmic incompatibility. Aedes aegypti ... Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() ![]() ![]() |
Novel Symbiotic Genome-Scale Model Reveals Wolbachia’s Arboviral Pathogen Blocking Mechanism in Aedes aegyptiN. E. Jiménez, Z. P. Gerdtzen, Á. Olivera-Nappa, J. C. Salgado and C. Conca, mBio, e0156321. 2021.Arboviral diseases such as Zika and Dengue have been on the rise mainly due to climate change, and the development of new treatments and strategies to limit their spreading is needed. The use of Wolbachia as an approach for disease control has motivated new research related to ... Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Spatial modelling for population replacement of mosquito vectors at continental scaleN. J. Beeton, A. Wilkins, A. Ickowicz, K. R. Hayes and G. R. Hosack, bioRxiv, 2021.10.06.463299. 2021.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() We explore transmission of the gene drive between the subspecies, different hybridisation mechanisms, the effects of both local dispersal and potential wind-aided migration to the spread, and the development of resistance to the gene drive. We find that given best current ... Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() ![]() ![]() |
Wolbachia-Conferred Antiviral Protection Is Determined by Developmental TemperatureE. Chrostek, N. Martins, M. S. Marialva and L. Teixeira, mBio, e0292320. 2021.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Overall, we show that Wolbachia-conferred antiviral protection is temperature dependent, being present or absent depending on the environmental conditions. This interaction likely impacts Wolbachia-host interactions in nature and, as a result, frequencies of host and symbionts in ... Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() ![]() ![]() |
Assessment of fitness and vector competence of a New Caledonia wMel Aedes aegypti strain before field-releaseN. Pocquet, O. O’Connor, H. A. Flores, J. Tutagata, M. Pol, D. J. Hooker, C. Inizan, S. Russet, J. M. Duyvestyn, E. C. Pacidônio, D. Girault, D. da Silva Gonçalves, M. Minier, F. Touzain, E. Chalus, K. Lucien, F. Cheilan, T. Derycke, S. Laumond, C. P. Sim, PLOS Neglected Tropical Diseases, 15:e0009752. 2021.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Dengue represents a risk for almost half of the world’s population, especially throughout the tropics. In New Caledonia, dengue outbreaks have become more frequent in the past decade along with the recent circulation of chikungunya and Zika viruses. The opportunity to use the ... Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() ![]() |
Mosquito transgenesis for malaria controlS. Dong, Y. Dong, M. L. Simões and G. Dimopoulos, Trends in Parasitology, 2021.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Malaria is one of the deadliest diseases. Because of the ineffectiveness of current malaria-control methods, several novel mosquito vector-based control strategies have been proposed to supplement existing control strategies. Mosquito transgenesis and gene drive have emerged as ... Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() |
Identifying Sites for Testing Modified Mosquitoes as a Strategy to Eradicate MalariaA. Fell, UC Davis News, 2021.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() In a newly published article in the journal Evolutionary Applications Professor Greg Lanzaro and his team at the Vector Genetics Laboratory, UC Davis School of Veterinary Medicine, set forth a framework for the selection of field sites in Africa best suited for testing ... Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() |
Gene drives gaining speedE. Bier, Nature Reviews Genetics, 2021.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Gene drives are selfish genetic elements that are transmitted to progeny at super-Mendelian (>50%) frequencies. Recently developed CRISPR–Cas9-based gene-drive systems are highly efficient in laboratory settings, offering the potential to reduce the prevalence of vector-borne ... Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() |
Selection of sites for field trials of genetically engineered mosquitoes with gene driveG. C. Lanzaro, M. Campos, M. Crepeau, A. Cornel, A. Estrada, H. Gripkey, Z. Haddad, A. Kormos and S. Palomares, Evolutionary Applications, 15. 2021.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Novel malaria control strategies using genetically engineered mosquitoes (GEMs) are on the horizon. Population modification is one approach wherein mosquitoes are engineered with genes rendering them refractory to the malaria parasite, Plasmodium falciparum, coupled with a ... Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() ![]() ![]() |
Combating mosquito-borne diseases using genetic control technologiesG.-H. Wang, S. Gamez, R. R. Raban, J. M. Marshall, L. Alphey, M. Li, J. L. Rasgon and O. S. Akbari, Nature Communications, 12:4388. 2021.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Mosquito-borne diseases, such as dengue and malaria, pose significant global health burdens. Unfortunately, current control methods based on insecticides and environmental maintenance have fallen short of eliminating the disease burden. Scalable, deployable, genetic-based ... Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() ![]() |
Targeting Conserved Sequences Circumvents the Evolution of Resistance in a Viral Gene Drive against Human CytomegalovirusM. Walter, R. Perrone, E. Verdin and F. Goodrum, Journal of Virology, 95:e00802-21. 2021.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Gene drives are genetic systems designed to efficiently spread a modification through a population. They have been designed almost exclusively in eukaryotic species, especially in insects. We recently developed a CRISPR-based gene drive system in herpesviruses that relies on ... Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() |
Using gene drives to control malariaA. Fell, Daily News, 2021.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() A group of UC scientists led by Greg Lanzaro, professor of pathology, microbiology and immunology in the UC Davis School of Veterinary Medicine, recently completed an analysis of a strategy aimed at eliminating malaria from Africa using genetically engineered mosquitoes. ... Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Population modification strategies for malaria vector control are uniquely resilient to observed levels of gene drive resistance allelesG. C. Lanzaro, H. M. Sánchez C, T. C. Collier, J. M. Marshall and A. A. James, BioEssays, 2021.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Cas9/guide RNA (gRNA)-based gene drive systems are expected to play a transformative role in malaria elimination efforts., whether through population modification, in which the drive system contains parasite-refractory genes, or population suppression, in which the drive system ... Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() ![]() |
Stable high-density and maternally inherited Wolbachia infections in Anopheles moucheti and Anopheles demeilloni mosquitoesT. Walker, S. Quek, C. L. Jeffries, J. Bandibabone, V. Dhokiya, R. Bamou, M. Kristan, L. A. Messenger, A. Gidley, E. A. Hornett, E. R. Anderson, C. Cansado-Utrilla, S. Hegde, C. Bantuzeko, J. C. Stevenson, N. F. Lobo, S. C. Wagstaff, C. A. Nkondjio, S. R., Current Biology, 31:2310. 2021.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Wolbachia, a widespread bacterium that can reduce pathogen transmission in mosquitoes, has recently been reported to be present in Anopheles (An.) species. In wild populations of the An. gambiae complex, the primary vectors of Plasmodium malaria in Sub-Saharan Africa, Wolbachia ... Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() ![]() |
Using Wolbachia to Eliminate Dengue: Will the Virus Fight Back?M. Edenborough Kathryn, A. Flores Heather, P. Simmons Cameron, E. Fraser Johanna and C. Pierson Ted, Journal of Virology, 95:e02203-20. 2021.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Recent fieldtrials havedemonstratedthatdengue incidence can besubstantially reduced by introgressing strains of the endosymbiotic bacterium Wolbachia into Aedes aegypti mosquito populations. This strategy relies on Wolbachia reducing the susceptibility of Ae. aegypti to ... Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() ![]() |
Vector control: Discovery of Wolbachia in malaria vectorsP. A. Ross and A. A. Hoffmann, Current Biology, 31:R738-R740. 2021.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Wolbachia bacteria are being widely released for suppression of dengue transmitted by Aedes mosquitoes. Walker, Quek, Jeffries and colleagues present robust evidence for natural Wolbachia infections in malaria-vectoring Anopheles mosquitoes, paving the way for new ... Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() |
The origin of island populations of the African malaria mosquito, Anopheles coluzziiM. Campos, M. Hanemaaijer, H. Gripkey, T. C. Collier, Y. S. Lee, A. J. Cornel, J. Pinto, D. Ayala, H. Rompao and G. C. Lanzaro, Communications Biology, 4:9. 2021.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Anopheles coluzzii is a major malaria vector throughout its distribution in west-central Africa. Here we present a whole-genome study of 142 specimens from nine countries in continental Africa and three islands in the Gulf of Guinea. This sample set covers a large part of this ... Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Selection of Sites for Field Trials of Genetically Engineered Mosquitoes with Gene DriveG. C. Lanzaro, M. Campos, M. Crepeau, A. Cornel, A. Estrada, H. Gripkey, Z. Haddad, A. Kormos, S. Palomares and W. Sharpee, bioRxiv, 2021.04.28.441877. 2021.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Novel malaria control strategies using genetically engineered mosquitoes (GEMs) are on the horizon. Population modification is one approach wherein mosquitoes are engineered with genes rendering them refractory to the malaria parasite coupled with a low-threshold, Cas9-based gene ... Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() |
CRISPR may help curb malaria by altering a mosquito’s gut genes, new study suggestsCornell Alliance for Science, Genetic Literacy Project, 2021.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Altering a mosquito’s gut genes to make them spread antimalarial genes to the next generation of their species shows promise as an approach to curb malaria, suggests a preliminary study published in eLife. The study is the latest in a series of steps toward using CRISPR-Cas9 ... Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() |
Eliminating malaria via a simple genetic modificationS. Gunn, Front Line Genomics, 2021.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Despite decades worth of research and efforts, data from 2015 onwards suggests that there has been no significant progress in reducing global malaria cases. Every year, around 400,00 people die from malaria, with over 90% of cases being within sub-Saharan Africa. The rise of ... Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() |
This Malaria Preventing Mosquito Is Not A GMO But Is A Science Boost For Nature – Will Activists Want To Block It?H. Campbell, science 2.0, 2021.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Mosquitoes like Aedes aegypti don't have any value ecologically. If Thanos snapped them out of existence tomorrow there is nothing they do that won't immediately be taken up by 3,000 other mosquito species, not to mention 25,000 bee species when it comes to pollination. The ... Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() |
Breeding Malaria Out: Scientists Engineer Mosquitos to Spread Antimalaria GenesL. Papadopoulos, INTERSTING ENGINEERING, 2021.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() According to the Centers for Disease Control and Prevention (CDC), malaria is a "serious and sometimes fatal disease caused by a parasite that commonly infects a certain type of mosquito which feeds on humans." There are four types of malaria parasites: Plasmodium falciparum, P. ... Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() |
Curbing Malaria’s Spread by Genetic EngineeringAnonymous, Genetic Engineering & Biotechnology News, 2021.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() There is an urgent need to find new ways to combat the growing mosquito resistance to pesticides and malaria parasite resistance to antimalarial drugs. Gene drives are being tested as a new approach. In a new study, researchers from the Imperial College London reported that their ... Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() |
New genetic modification could cut malaria spreadStaff Writers, MALAYSIA NOW, 2021.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Altering a mosquito’s gut genes to make them spread antimalarial genes to the next generation of their species shows promise as an approach to curb malaria, suggests a preliminary study published in eLife on Tuesday. The study is the latest in a series of steps being taken ... Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() |
Researchers Using Mutant Mosquitoes To End Malaria, Which Kills 4 Lakh Per YearM. Mohanti, India Times, 2021.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Every year, more than 22 crore people get infected with malaria and more than 4 lakh die because of it. In fact, in 2019, nearly half of the world's population was at risk of malaria. According to WHO, infants or children aged under 5 years are the most vulnerable group, ... Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() ![]() |
Evidence for natural hybridization and novel Wolbachia strain superinfections in the Anopheles gambiae complex from GuineaC. L. Jeffries, C. Cansado-Utrilla, A. H. Beavogui, C. Stica, E. K. Lama, M. Kristan, S. R. Irish and T. Walker, Royal Society Open Science, 8:18. 2021.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Wolbachia, a widespread bacterium which can influence mosquito-borne pathogen transmission, has recently been detected within Anopheles (An.) species that are malaria vectors in Sub-Saharan Africa. Although studies have reported Wolbachia strains in the An. gambiae complex, ... Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() |
Genetically modified mosquitoes for better healthD. Devis, COSMOS, 2021.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() One method of preventing these mosquito-born diseases is to use insecticides to kill the mozzies and remove them, but sometimes this only works as a short term solution, or has unintended devasting effects on the ecosystem. Another method for decreasing the number of ... Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() ![]() |
Quantifying the risk of vector-borne disease transmission attributable to genetically modified vectorsG. R. Hosack, A. Ickowicz and K. R. Hayes, Royal Society Open Science, 8:201525. 2021.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() The relative risk of disease transmission caused by the potential release of transgenic vectors, such as through sterile insect technique or gene drive systems, is assessed with comparison with wild-type vectors. The probabilistic risk framework is demonstrated with an assessment ... Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() |
Exploring Gene Drive Technologies in Agriculture, Biodiversity and Human DiseaseThe GBIRd Partnership and The GeneConvene Global Collaborative, Gene Drive Research Forum, 2021.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() The GBIRd Partnership and The GeneConvene Global Collaborative recently collaborated through The Gene Drive Research Forum, to create and produce an engaging conversation between Drs. Fred Gould and Charles Godfray about gene drive technologies – the potential benefits and ... Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() |
CRISPR and the splice to survive: New gene-editing technology could be used to save species from extinction—or to eliminate them.E. Kolbert, New Yorker, 2021.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() About a year ago, not long before the pandemic began, I paid a visit to the center, which is an hour southwest of Melbourne. The draw was an experiment on a species of giant toad known familiarly as the cane toad. The toad was introduced to Australia as an agent of pest control, ... Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() ![]() |
Next-generation tools to control biting midge populations and reduce pathogen transmissionP. Shults, L. W. Cohnstaedt, Z. N. Adelman and C. Brelsfoard, Parasites and Vectors, 14:31. 2021.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Biting midges of the genus Culicoides transmit disease-causing agents resulting in a significant economic impact on livestock industries in many parts of the world. Localized control efforts, such as removal of larval habitat or pesticide application, can be logistically ... Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() ![]() |
Mosquito Sexual Selection and Reproductive Control ProgramsL. J. Cator, C. A. S. Wyer and L. C. Harrington, Trends in Parasitology, 37:330-339. 2021.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() The field of mosquito mating biology has experienced a considerable expansion in the past decade. Recent work has generated many key insights about specific aspects of mating behavior and physiology. Here, we synthesize these findings and classify swarming mosquito systems as ... Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() |
Control of malaria-transmitting mosquitoes using gene drivesT. Nolan, Philosophical Transactions of the Royal Society B: Biological Sciences, 376:20190803. 2020.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() In this article, I will discuss the relative merits of this type of gene drive, as well as barriers to its technical development and to its deployment in the field as malaria control. This article is part of the theme issue ‘Novel control strategies for mosquito-borne ... Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() |
Mosquito population modification: the drive to malaria eradicationA. A. James, BugBitten BMC, 2020.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() We have had considerable success in the past demonstrating that we can use modern molecular biological and insect transgenesis tools to make genes that prevent mosquitoes from passing on parasites (see 1 and 2). We have focused most recently on laboratory experiments to find ways ... Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() |
The promise of CRISPR and gene drive systems to end malaria in AfricaE. Gomez-Diaz, ARRIGE ORG, 2020.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Presentation by Elena Gómez Díaz (IPBLN-CSIC, Granada, Spain) at the ARRIGE 2020 meeting on "The promise of CRISPR and gene drive systems to end malaria in Africa". Discussion is included at the end of the Ruud de Maagd presentation.https://youtu.be/te3MJ8EZoes Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() |
Brave New Planet: Reshaping Nature Through Gene DrivesE. Lander, Brave New Planet, 2020.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() A new technology, called gene drives, has the power to spread any genetic instructions you wish across an entire animal or plant species in the wild. It might let us restore ecosystems ravaged by invasive species, or help species adapt to climate change. And, it might save ... Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() |
Gene drive blocks malaria transmission in mosquitoeslabonline, labonline, 2020.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Employing a strategy known as ‘population modification’, which involves using a CRISPR-Cas9 gene drive system to introduce genes preventing parasite transmission into mosquito chromosomes, University of California (UC) researchers have made a major advance in the use of ... Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() |
Gene Drives: A Controversial Tool to Fight MalariaH. Albert, LABIOTECH.eu, 2020.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() The possibility of creating gene drives was introduced into the scientific community in 2003 by Austin Burt, a professor at Imperial College London. Burt was studying ‘selfish genes’ that can copy themselves into a specific target DNA sequence. He suggested that these genes, ... Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() |
A gene-drive rescue system for the modification of malaria mosquito populationsA. Adolfi, Nature Research Bioengineering Community, 2020.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Mosquito populations can now be reliably modified using 1) antimalarial molecules that block parasite development and 2) a CRISPR-based gene drive system that mediates their rapid spreading across the vector population. Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() |
UC researchers pioneer more effective method of blocking malaria transmission in mosquitoesUCI, UCI News, 2020.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() University of California, Irvine postdoctoral researcher Adriana Adolfi, in collaboration with colleagues at UCI, UC Berkeley and UC San Diego, followed up on the group’s pioneering effort to develop CRISPR-based gene drive systems for making mosquito vectors resistant to ... Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() ![]() ![]() |
Efficient population modification gene-drive rescue system in the malaria mosquito Anopheles stephensiA. Adolfi, V. M. Gantz, N. Jasinskiene, H.-F. Lee, K. Hwang, G. Terradas, E. A. Bulger, A. Ramaiah, J. B. Bennett, J. J. Emerson, J. M. Marshall, E. Bier and A. A. James, Nature Communications, 11:5553. 2020.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Here, we develop a recoded gene-drive rescue system for population modification of the malaria vector, Anopheles stephensi, that relieves the load in females caused by integration of the drive into the kynurenine hydroxylase gene by rescuing its function. Non-functional resistant ... Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() |
Engineered Gene Drives: State of Research Webinar Series by The GeneConvene Global Collaborative September-October 2020David O'Brochta and Hector Quemada, GeneConvene Global Collaborative, 2020.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() A series of technical webinars on engineered gene drive technology research and development given by leading researchers in the field. Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() ![]() ![]() |
Viral gene drive in herpesvirusesM. Walter and E. Verdin, Nature Communications, 11:4884. 2020.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Here, we report on a gene drive system that allows the spread of an engineered trait in populations of DNA viruses and, in particular, herpesviruses. Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() |
Risks of releasing gene drives mosquitoes – a possible future scenarioTestbiotech, Testbiotech, 2020.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Genetically engineering the genome of an organism with gene drive means that it will be replicated in every following generation. This allows the altered gene to spread rapidly throughout natural populations, which may be decimated or even eradicated. The video contains both ... Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() ![]() |
A CRISPR homing gene drive targeting a haplolethal gene removes resistance alleles and successfully spreads through a cage populationJ. Champer, E. Yang, E. Lee, J. Liu, A. G. Clark and P. W. Messer, Proceedings of the National Academy of Sciences, 202004373. 2020.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Here, we present a CRISPR homing drive that was able to successfully spread to all individuals in a laboratory cage study in Drosophila melanogaster without any apparent evolution of resistance. Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() |
GeneConvene Global Collaborative Webinar SeriesDavid O'Brochta and Hector Quemada, GeneConvene Global Collaborative, 2020.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() This is a series of public scientific and technical seminars by researchers actively involved in the research and development of engineered gene drive and related systems. Presentations will be aimed at other researchers and scientists, highlighting the latest investigations in ... Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() |
Anthony James / Mosquito ModificationBig Picture Science, SETI Institute, 2020.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Anthony James, vector biologist at the University of California, Irvine, describeshow we might genetically modify mosquitoes to make them unable to pass malaria on to humans. Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() ![]() |
Next-generation gene drive for population modification of the malaria vector mosquito, Anopheles gambiaeR. Carballar-Lejarazú, C. Ogaugwu, T. Tushar, A. Kelsey, T. B. Pham, J. Murphy, H. Schmidt, Y. Lee, G. C. Lanzaro and A. A. James, Proceedings of the National Academy of Sciences, 202010214. 2020.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() We show here that the Cas9/guide RNA-based gene-drive components of a genetically-engineered malaria mosquito vector, Anopheles gambiae, achieve key target product profile requirements for efficacy and performance. Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Engineered Reproductively Isolated Species Drive Reversible Population ReplacementA. Buchman, I. Shriner, T. Yang, J. Liu, I. Antoshechkin, J. M. Marshall, M. W. Perry and O. S. Akbari, bioRxiv, 2020.08.09.242982. 2020.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Engineered reproductive species barriers are useful for impeding gene flow and driving desirable genes into wild populations in a reversible threshold-dependent manner. We engineer multiple reproductively isolated SPECIES and demonstrate their threshold-dependent gene drive ... Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() |
Gene Drive Webinars -ENSSER, CSS, VDW and SCEuropean Network of Scientists for Social and Environmental Responsibility, , 2020.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() This series of 5 Webinars by some of the authors of the interdisciplinary Gene Drive Report (2019) and were organised by four organisations of independent scientists: the European Network of Scientists for Social and Environmental Responsibility (ENSSER), Critical Scientists ... Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Converting endogenous genes of the malaria mosquito into simple non-autonomous gene drives for population replacementA. Hoermann, S. Tapanelli, P. Capriotti, E. K. G. Masters, T. Habtewold, G. K. Christophides and N. Windbichler, bioRxiv, 2020.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Here we explore how minimal genetic modifications of endogenous mosquito genes can convert them directly into non-autonomous gene drives without disrupting their expression. Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() |
Gene editing and the war against malariaE. Bier and E. Sobber, American Scientist, 102:162. 2020.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Malaria is a devastating disease transmitted from person to person by mosquitoes. It kills more than 400,000 people per year, more than half of those deaths being children 5 years old or younger. CRISPR (clustered regularly interspaced short palindromic repeats) is a new ... Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() |
Biomphalaria glabrata Granulin Increases Resistance to Schistosoma mansoni Infection in Several Biomphalaria Species and Induces the Production of Reactive Oxygen Species by HaemocytesJ. R. Hambrook, A. A. Gharamah, E. A. Pila, S. Hussein and P. C. Hanington, Genes, 11:12. 2019.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() In this study, we demonstrate that in vivo addition of Biomphalaria glabrata pro-granulin (BgGRN) can reduce Schistosoma mansoni infection success in numerous Biomphalaria sp. when challenged with different S. mansoni strains. We also demonstrate that cleavage of BgGRN into ... Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() |
Malaysia Wolbachia trials: Battling dengue and other mosquito-borne viruses, 2019.Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |
![]() ![]() |
Possible replacement of malaria mosquitoesS. Avery Jones, Transactions of The Royal Society of Tropical Medicine and Hygiene, 51:469-470. 1957.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Sir,--The purpose of this letter is to draw the attention of research workers in control of mosquito colonies to the possible value of investigating the factors governing the infection of mosquitoes with parasites of human malaria. If a strain of a vector species could be ... Keywords: Aedes, aegypti, dengue, modeling, population modification, Wolbachia drive, ZIKA |


Contact
David O’Brochta
Foundation for the
National Institutes of Health
geneconvenevi@fnih.org
RSS