Considerations for homology-based DNA repair in mosquitoes: Impact of sequence heterology and donor template source
Considerations for homology-based DNA repair in mosquitoes: Impact of sequence heterology and donor template source
Tags: Aedes, CRISPR, Gene drive synthetic, Genetic biocontrol, Replicator/site directed nucleaseJ. X. D. Ang, K. Nevard, R. Ireland, D.-K. Purusothaman, S. A. N. Verkuijl, L. Shackleford, E. Gonzalez, M. A. E. Anderson and L. Alphey, PLOS Genetics, 18:e1010060. 2022.
Author summary The field of genetic control of mosquito vectors has progressed rapidly in recent years, especially in Cas9-based control systems, due to its robustness to elicit a species-specific and dispersive control of mosquito population. To generate a Cas9-based integration, Cas9 and sgRNA are used to cleave a chromosomal locus while a plasmid DNA donor, containing a genetic cargo flanked by sequences homologous to the chromosomal locus, is supplied as a repair template. This results in the cargo being copied into the genome through HDR. This form of integration, however, is currently one of the major bottlenecks for researchers as it involves a laborious process of microinjecting mosquito embryos and has rather low integration rates. In this study, we assessed the effects of homologous sequence mismatches and various donor template forms (i.e. plasmid, ssDNA, biotinylated ds/ssDNA) on HDR. We found that sequence mismatches and non-plasmid donors reduced the efficiency and integrity of integration, respectively. By analysing the direction and length of homologous sequence that was copied into the genome concurrently with the cargo, we inferred the mechanism responsible for the integrations observed in our study. These findings will be useful to guide future construct designs for optimal HDR rates in mosquitoes.