Fine-scale estimation of key life-history parameters of malaria vectors: implications for next-generation vector control technologies

A. L. Morris, A. Ghani and N. Ferguson,  Parasites and Vectors,  14:311. 2021.

Mosquito control has the potential to significantly reduce malaria burden on a region, but to influence public health policy must also show cost-effectiveness. Gaps in our knowledge of mosquito population dynamics mean that mathematical modelling of vector control interventions have typically made simplifying assumptions about key aspects of mosquito ecology. Often, these assumptions can distort the predicted efficacy of vector control, particularly next-generation tools such as gene drive, which are highly sensitive to local mosquito dynamics.

Mosquito control has the potential to significantly reduce malaria burden on a region, but to influence public health policy must also show cost-effectiveness. Gaps in our knowledge of mosquito population dynamics mean that mathematical modelling of vector control interventions have typically made simplifying assumptions about key aspects of mosquito ecology. Often, these assumptions can distort the predicted efficacy of vector control, particularly next-generation tools such as gene drive, which are highly sensitive to local mosquito dynamics.


More related to this:

Local dynamics of a fast-evolving sex-ratio system in Drosophila simulans

Evolutionary dynamics of CRISPR gene drives

Detecting the population dynamics of an autosomal sex ratio distorter transgene in malaria vector mosquitoes

Model Concepts for Gene Drive Dynamics

The dynamics of maternal-effect selfish genetic elements