Inherently confinable split-drive systems in Drosophila

G. Terradas, A. B. Buchman, J. B. Bennett, I. Shriner, J. M. Marshall, O. S. Akbari and E. Bier,  bioRxiv,  2020.09.03.282079. 2020.

CRISPR-based gene drive systems, which copy themselves based on gene conversion mediated by the homology directed repair (HDR) pathway, have potential to revolutionize vector control. However, mutant alleles generated by the competing non-homologous end-joining (NHEJ) pathway that are rendered resistant to Cas9 cleavage can interrupt the spread of gene-drive elements. We hypothesized that drives targeting genes essential for viability or reproduction also carrying recoded sequences to restore endogenous gene functionality should benefit from dominantly-acting maternal clearance of NHEJ alleles, combined with recessive Mendelian processes. Here, we test split gene-drive (sGD) systems in Drosophila melanogaster that were inserted into essential genes required for viability (rab5, rab11, prosalpha2) or fertility (spo11). In single generation crosses, sGDs copy with variable efficiencies and display sex-biased transmission. In multi-generational cage trials, sGD follow distinct drive trajectories reflecting their differential tendencies to induce target chromosome damage or lethal/sterile mosaic phenotypes, leading to inherently confineable drive outcomes.

 


More related to this:

Gene drive systems in mosquitoes: rules of the road

Can CRISPR-based gene drive be confined in the Wild? A question for molecular and population biology

Gene drive systems for insect disease vectors

Multiple meiotic drive systems in Drosophila melanogaster male

Competition at the Mouse t Complex: Rare Alleles Are Inherently Favored