N. Metchanun, C. Borgemeister, G. Amzati, J. von Braun, M. Nikolov, P. Selvaraj and J. Gerardin,
Evolutionary Applications,
2021.
Malaria elimination will be challenging in countries that currently continue to bear high malaria burden. Sex-ratio distorting gene drives, such as driving-Y, could play a role in an integrated elimination strategy if they can effectively suppress vector populations. Using a spatially explicit, agent-based model of malaria transmission in eight provinces spanning the range of transmission intensities across the Democratic Republic of the Congo, we predict the impact and cost-effectiveness of integrating driving-Y gene drive mosquitoes in malaria elimination strategies that include existing interventions such as insecticide-treated nets and case management of symptomatic malaria. Gene drive mosquitoes could eliminate malaria and were the most cost-effective intervention overall if the drive component was highly effective with at least 95% X-shredder efficiency at relatively low fertility cost, and associated cost of deployment below 7.17 $int per person per year. Suppression gene drive could be a cost-effective supplemental intervention for malaria elimination, but tight constraints on drive effectiveness and cost ceilings may limit its feasibility.
https://www.geneconvenevi.org/wp-content/uploads/2020/04/Evolutionary-Applications-e1573584140543-3.png300300David Obrochta/wp-content/uploads/2019/10/GC-color-logo-for-header-3277-x-827-1030x260.pngDavid Obrochta2021-12-07 17:59:092021-12-09 18:04:24Modeling impact and cost-effectiveness of driving-Y gene drives for malaria elimination in the Democratic Republic of the Congo