Modeling impact and cost-effectiveness of driving-Y gene drives for malaria elimination in the Democratic Republic of the Congo
Modeling impact and cost-effectiveness of driving-Y gene drives for malaria elimination in the Democratic Republic of the Congo
Tags: Anopheles, Gene drive synthetic, Malaria, Modeling, Replicator/site directed nucleaseN. Metchanun, C. Borgemeister, G. Amzati, J. von Braun, M. Nikolov, P. Selvaraj and J. Gerardin, Evolutionary Applications, 2021.
Malaria elimination will be challenging in countries that currently continue to bear high malaria burden. Sex-ratio distorting gene drives, such as driving-Y, could play a role in an integrated elimination strategy if they can effectively suppress vector populations. Using a spatially explicit, agent-based model of malaria transmission in eight provinces spanning the range of transmission intensities across the Democratic Republic of the Congo, we predict the impact and cost-effectiveness of integrating driving-Y gene drive mosquitoes in malaria elimination strategies that include existing interventions such as insecticide-treated nets and case management of symptomatic malaria. Gene drive mosquitoes could eliminate malaria and were the most cost-effective intervention overall if the drive component was highly effective with at least 95% X-shredder efficiency at relatively low fertility cost, and associated cost of deployment below 7.17 $int per person per year. Suppression gene drive could be a cost-effective supplemental intervention for malaria elimination, but tight constraints on drive effectiveness and cost ceilings may limit its feasibility.