Next-generation gene drive for population modification of the malaria vector mosquito, Anopheles gambiae

R. Carballar-Lejarazú, C. Ogaugwu, T. Tushar, A. Kelsey, T. B. Pham, J. Murphy, H. Schmidt, Y. Lee, G. C. Lanzaro and A. A. James,  Proceedings of the National Academy of Sciences,  202010214. 2020.

Genetic systems for controlling transmission of vector-borne diseases are moving from discovery-stage demonstrations of proofs-of-principle to the next phases of development. A successful transition requires meeting safety and efficacy criteria defined in target product profiles. We show here that the Cas9/guide RNA-based gene-drive components of a genetically-engineered malaria mosquito vector, Anopheles gambiae, achieve key target product profile requirements for efficacy and performance. This system is designed to achieve mosquito population modification when coupled with genes encoding antiparasite effector molecules and result in stable and sustainable blocking of malaria parasite transmission.A Cas9/guide RNA-based gene drive strain, AgNosCd-1, was developed to deliver antiparasite effector molecules to the malaria vector mosquito, Anopheles gambiae. The drive system targets the cardinal gene ortholog producing a red-eye phenotype. Drive can achieve 98 to 100% in both sexes and full introduction was observed in small cage trials within 6 to 10 generations following a single release of gene-drive males. No genetic load resulting from the integrated transgenes impaired drive performance in the trials. Potential drive-resistant target-site alleles arise at a frequency <0.1, and five of the most prevalent polymorphisms in the guide RNA target site in collections of colonized and wild-derived African mosquitoes do not prevent cleavage in vitro by the Cas9/guide RNA complex. Only one predicted off-target site is cleavable in vitro, with negligible deletions observed in vivo. AgNosCd-1 meets key performance criteria of a target product profile and can be a valuable component of a field-ready strain for mosquito population modification to control malaria transmission.All study data are included in the main text and SI Appendix.

 

More related to this:

Fighting malaria with gene-drive technology

Efficient population modification gene-drive rescue system in the malaria mosquito Anopheles stephensi

Experimental population modification of the malaria vector mosquito, Anopheles stephensi

Homing endonuclease mediated gene targeting in Anopheles gambiae cells and embryos

Efficient population modification gene-drive rescue system in the malaria mosquito Anopheles stephensi

A CRISPR-Cas9 gene drive system-targeting female reproduction in the malaria mosquito vector Anopheles gambiae