Reflection on the Challenges, Accomplishments, and New Frontiers of Gene Drives

Reflection on the Challenges, Accomplishments, and New Frontiers of Gene Drives

Tags: , , , , ,
M. Melesse Vergara, J. Labbé and J. Tannous,  BioDesign Research,  2022:9853416. 2022.

 

Designing gene drives to mitigate their unintended adverse risks and expand their potential benefits.
Image from Melesse Vergara et al (2022) https://doi.org/10.34133/2022/9853416

Ongoing pest and disease outbreaks pose a serious threat to human, crop, and animal lives, emphasizing the need for constant genetic discoveries that could serve as mitigation strategies. Gene drives are genetic engineering approaches discovered decades ago that may allow quick, super-Mendelian dissemination of genetic modifications in wild populations, offering hopes for medicine, agriculture, and ecology in combating diseases. Following its first discovery, several naturally occurring selfish genetic elements were identified and several gene drive mechanisms that could attain relatively high threshold population replacement have been proposed. This review provides a comprehensive overview of the recent advances in gene drive research with a particular emphasis on CRISPR-Cas gene drives, the technology that has revolutionized the process of genome engineering. Herein, we discuss the benefits and caveats of this technology and place it within the context of natural gene drives discovered to date and various synthetic drives engineered. Later, we elaborate on the strategies for designing synthetic drive systems to address resistance issues and prevent them from altering the entire wild populations. Lastly, we highlight the major applications of synthetic CRISPR-based gene drives in different living organisms, including plants, animals, and microorganisms.