Keywords: agriculture

Next-generation tools to control biting midge populations and reduce pathogen transmission

P. Shults, L. W. Cohnstaedt, Z. N. Adelman and C. Brelsfoard,  Parasites and Vectors,  14:31. 2021.
Biting midges of the genus Culicoides transmit disease-causing agents resulting in a significant economic impact on livestock industries in many parts of the world. Localized control efforts, such as removal of larval habitat or pesticide application, can be logistically ...
Keywords: , , , , ,

Expert advises farmers to adopt gene drive-based pest control technology

S. Thompson,  naija247news,  2020.
Dr Rose Gidado, County Coordinator, Open Forum on Agricultural Biotechnology(OFAB), has advised farmers to adopt the gene drive-based pest control technology. Gidado, also Deputy Director, National Biotechnology Development Agency (NABDA), said the adoption would significantly ...
Keywords: , , , , ,

Teach Me in 10 – Gene Drive Research with Dr. Jennifer Baltzegar

J. Baltzegar,  Technology Networks,  2020.
Dr Baltzegar teaches us about how the maturation of genetic engineering approaches has advanced gene drives, the two different strategies for gene drives and some of the key questions surrounding the application of gene drives in society.
Keywords: , , , , ,

Après les OGM, la nouvelle technique du forçage génétique inquiète écologistes et scientifiques

H. Leussier,  Reporterre,  2020.
Les organismes issus du forçage génétique peuvent transmettre, sans autre intervention humaine, des gènes modifiés à tous leurs descendants. Cette technique permettrait d’éradiquer des espèces nuisibles, comme certains moustiques vecteurs de la malaria. Mais des ...
Keywords: , , , , ,

The future of beef might be a sausage fest

N. Johnson,  grist,  2020.
N. Johnson. (2020) grist. A media report on the creation of a cow with a sex ratio altering genetic change expected to lead to 3/4 of the cow's offspring being males. This type of sex ratio distortion results in gene drive and is also being considered to help control populations ...
Keywords: , , , , ,

Meet Cosmo the Frankenbull: Scientists genetically engineer a bull calf so that 75 per cent of its offspring will be male

J. Pinkstone,  Daily Mail,  2020.
J. Pinkstone (2020). Daily Mail. A media report on the creation of a cow with a sex ratio altering genetic change expected to lead to 3/4 of the cow's offspring being males. This type of sex ratio distortion results in gene drive and is also being considered to help control ...
Keywords: , , , , ,

A Crispr calf is born. It’s definitely a boy

M. Molteni,  WIRED,  2020.
M. Molteni (2020). Wired. UC Davis scientists spent years editing a sex-determining gene into bovine embryos. In April, Cosmo arrived—and his DNA reveals how far the field has to go. This type of sex ratio distortion results in gene drive and is also being considered to help ...
Keywords: , , , , ,

Meet the first genetically modified bull. Why did scientists change it

J. Kessler,  Free News,  2020.
J. Kessler (2020). Free News. UC Davis scientists have successfully introduced a bovine embryo, or the bovine SRY gene, which is responsible for the development of the male. This is the first demonstration of targeted gene insertion for large DNA sequences through embryo-mediated ...
Keywords: , , , , ,

Scientists use CRISPR technology to insert sex-determining gene

A. Quinton,  Phys Org,  2020.
A. Quinton (2020). Phys Org. Scientists at the University of California, Davis, have successfully produced a bull calf, named Cosmo, who was genome-edited as an embryo so that he'll produce more male offspring. The research was presented in a poster on July 23 at the American ...
Keywords: , , , , ,

An argument for gene drive technology to genetically control populations of insects like mosquitoes and locusts

I. Ronai and B. Lovett,  The Conversation,  2020.
The fate of society rests in part on how humans navigate their complicated relationship with insects – trying to save “good” insects and control “bad” ones. Some insects, like mosquitoes, bite people and make them sick – remember Zika? Now the U.S. mosquito season is ...
Keywords: , , , , ,

Gene Drive: Can this be the Future of Agricultural Pest Management?

P. Mondal, U. Mohapatra and M. Ganguly,  International Journal of Current Microbiology and Applied Sciences,  9. 2020.
A world free of hunger may be possible when the agricultural production exceeds the global demand for the food. In the era of increasing population, the need for increased food production can be attainable by managing the destructive pests of the agricultural and horticultural ...
Keywords: , , , , ,

Bioengineering horizon scan 2020

L. Kemp, L. Adam, C. R. Boehm, R. Breitling, R. Casagrande, M. Dando, A. Djikeng, N. G. Evans, R. Hammond, K. Hills, L. A. Holt, T. Kuiken, A. Markotić, P. Millett, J. A. Napier, C. Nelson, S. S. ÓhÉigeartaigh, A. Osbourn, M. J. Palmer, N. J. Patron, E. P,  eLife,  9:e54489. 2020.
Horizon scanning is intended to identify the opportunities and threats associated with technological, regulatory and social change. In 2017 some of the present authors conducted a horizon scan for bioengineering (Wintle et al., 2017). Here we report the results of a new horizon ...
Keywords: , , , , ,

Understanding the Science of Gene Drive and the Potential for an Improved Crop Pest Control System in Nigeria

A. Isah and R. S. M. Gidado,  OFAB Nigeria,  2020.
Several studies have shown that the Cas9-mediated gene drive technology is cheaper and will be easily affordable by the efficient Nigerian scientists to explore. The application of the gene drive technologies have many more controls over several other devastating insects in ...
Keywords: , , , , ,

Gene drives in Wisconsin agriculture: What are they, and should you support it?

Jones, M. and Mitchell, P. D.,  Renk Agribusiness Institute,  2019.
Spotted wing drosophila and citrus psyllid are not serious economic problems for Wisconsin agriculture. However, these and other smaller, geographically limited applications of gene drives are excellent ways to prove the concept and refine the methods. Pending the outcome of ...
Keywords: , , , , ,

A 2017 horizon scan of emerging issues for global conservation and biological diversity

Sutherland, WJB, P.; Broad, S.; Clout, M.; Connor, B.; Cote, I. M.; Dicks, L. V.; Doran, H.; Entwistle, A. C.; Fleishman, E.; Fox, M.; Gaston, K. J.; Gibbons, D. W.; Jiang, Z.; Keim, B.; Lickorish, F. A.; Markillie, P.; Monk, K. A.; Pearce-Higgins, J. W.; Peck, L. S.; Pretty, J.; Spalding, M. D.; Tonneijck, F. H.; Wintle, B. C.; Ockendon, N.,  Trends in Ecology & Evolution,  32:31-40. 2019.
We present the results of our eighth annual horizon scan of emerging issues likely to affect global biological diversity, the environment, and conservation efforts in the future. The potential effects of these novel issues might not yet be fully recognized or understood by the ...
Keywords: , , , , ,

Just Say No to Agricultural Gene Drives

Bassey-Orovwuje, M.,  Project Syndicate,  2018.
By forcing laboratory-made genes on an entire population or species, cutting-edge gene-drive technologies have the power to transform entire ecosystems in one fell swoop. But where leading industrial agriculture firms see dollar signs, farmers in the regions where gene drives ...
Keywords: , , , , ,

Gene Drives – Wundermittel? Biowaffe?

Swiss Academy of Sciences SCNAT,  Swiss Academy of Sciences,  2018.
Gene drives are genetic elements that skew the pattern of inheritance of a given characteristic in sexually reproduc- ing organisms. They can be used to spread a characteristic that can alter or even reduce the numbers of individuals in wild populations of a certain species.
Keywords: , , , , ,

Gene drives and the management of agricultural pests

R. F. Medina,  Journal of Responsible Innovation,  5:S255-S262. 2018.
Like all pest control strategies, gene drives are not hazard-free. Ecological risk assessment of gene drives designed to control agricultural pests should be conducted before their deployment. The present commentary provides some thoughts on some of the issues one should consider ...
Keywords: , , , , ,

Summary

Committee on Gene Drive Research in Non-Human Organisms: Recommendations for Responsible,  Journal of Responsible Innovation,  5:S243-S254. 2018.
Scientists have studied gene drives for more than 50 years. The development of a powerful genome editing tool in 2012, CRISPR/Cas9,1 led to recent breakthroughs in gene drive research that built on that half century’s worth of knowledge, and stimulated new discussion of the ...
Keywords: , , , , ,

Economic issues to consider for gene drives

P. D. Mitchell, Z. Brown and N. McRoberts,  Journal of Responsible Innovation,  5:S180-S202. 2018.
We examine four economic issues regarding gene drive applications made possible by gene editing technologies. The potentially substantial benefits, coupled with the technical, social, and economic uncertainties surrounding gene drives, suggest that a responsible course of action ...
Keywords: , , , , ,

Agricultural production: assessment of the potential use of Cas9-mediated gene drive systems for agricultural pest control

M. J. Scott, F. Gould, M. Lorenzen, N. Grubbs, O. Edwards and D. O’Brochta,  Journal of Responsible Innovation,  5:S98-S120. 2018.
To highlight how gene drives could be useful for control of agricultural insect pests, we selected species that are pests of animals (New World screwworm), plants (spotted wing Drosophila, diamondback moth, Bemisia tabaci whitefly), or stored grains (red flour beetle). We ...
Keywords: , , , , ,

Economic issues to consider for gene drives

Mitchell, PDB, Z.; McRoberts, N.,  Journal of Responsible Innovation,  5:S180-S202. 2018.
We examine four economic issues regarding gene drive applications made possible by gene editing technologies. First, whether gene drives are self-sustaining or self-limiting will largely determine which types of organizations have incentives to develop and deploy gene drives and ...
Keywords: , , , , ,

Using CRISPR-based gene drive for agriculture pest control

V. Courtier-Orgogozo, B. Morizot and C. Boëte,  EMBO Reports,  18:1481. 2017.
The authors respond to comments to their publication 10.15252/embr.201744205
Keywords: , , , , ,

Agricultural pest control with CRISPR-based gene drive: time for public debate

V. Courtier-Orgogozo, B. Morizot and C. Boëte,  EMBO Reports,  18:878-880. 2017.
Gene drive technology to control disease vectors or pests has great potential for addressing humanitarian and public health problems. Its application for pest control in agriculture, however, raises important environmental, social and ethical issues.
Keywords: , , , , ,

The End of the GMO? Genome Editing, Gene Drives and New Frontiers of Plant Technology

K. L. Hefferon and R. J. Herring,  Review of Agrarian Studies,  7. 2017.
mprovements to agriculture will constitute one of the world’s greatest challenges in the coming century. Political and social controversies, as well as complications of plant breeding, intellectual property, and regulation, have compromised the promised impact of genetically ...
Keywords: , , , , ,

Science and Technology Committee Genetically Modified Insects

UK Parliament,  UK Parliament,  2015.
The UK is a world leader in the development of this technology. The European Union’s regulatory process, however, is likely to hold back progress. There is a moral duty to test the potential of the technology. We therefore support further research and call for action to test ...
Keywords: , , , , ,

CRISPR-Cas9: Gene Drive Safeguards

Wyss Institute,  Harvard University,  2015.
In this animation, learn how effective safeguarding mechanisms developed at the Wyss Institute and Harvard Medical School can be applied to ensure gene drive research is done responsibly in the laboratory. These safeguards enable responsible scientific investigation into how gene ...
Keywords: , , , , ,

What is Gene Drive?

Entomological Society of America,  2015.
A fact sheet from the Entomological Society of America.
Keywords: , , , , ,

Regulatory experience and challenges for the release of GM insects

Beech, C,  Journal Fur Verbraucherschutz Und Lebensmittelsicherheit-Journal of Consumer Protection and Food Safety,  9:S71-S76. 2014.
Genetically modified (GM) insects are a potentially valuable new tool for the biological control of insect pests of humans, animals and plants. Considerable progress has been made recently in transfer of GM insects from the laboratory to release and evaluation in the environment. ...
Keywords: , , , , ,