Broad dengue neutralization in mosquitoes expressing an engineered antibody

A. Buchman, S. Gamez, M. Li, I. Antoshechkin, H.-H. Li, H.-W. Wang, C.-H. Chen, M. J. Klein, J.-B. Duchemin, J. E. Crowe, Jr., P. N. Paradkar and O. S. Akbari,  PLOS Pathogens,  16:e1008103. 2020.

Author summary With limited success of traditional vector control methods to curb dengue infections and more than half of the world’s population still at risk, there is a need for novel strategies to reduce its impact on public health. Recent advances in genetic technologies has allowed for precise modifications of mosquito genome to make them resistant to infections, thus breaking the transmission cycle. Here we generated engineered Ae. aegypti mosquitoes efficiently expressing a DENV-targeting single-chain variable fragment (scFv) derived from a previously characterized broadly neutralizing human antibody, which blocked infection and transmission in these mosquitoes. To our knowledge, this is the first example of an engineered transgene capable of rendering Ae. aegypti mosquitoes 100% refractory to all four serotypes of DENV. The engineered mosquitoes, in future, could easily be paired with a gene drive, capable of spreading the transgene throughout wild disease-transmitting mosquito populations and preventing further DENV transmission. Since a number of diverse and well-characterized antibodies exist against other arboviruses (eg chikungunya and Zika, this work also provides a proof-of-concept principle for developing similar genetic strategies for reducing the impact of these arboviruses.