Could species-focused suppression of Aedes aegypti, the yellow fever mosquito, and Aedes albopictus, the tiger mosquito, affect interacting predators? An evidence synthesis from the literature

J. A. S. Bonds, C. M. Collins and L.-C. Gouagna,  Pest Management Science,  2022.

Abstract The risks of Aedes aegypti and Aedes albopictus nuisance and vector-borne diseases are rising and the adverse effects of broad-spectrum insecticide application has promoted species-specific techniques, such as sterile insect technique (SIT) and other genetic strategies, as contenders in their control operations. When specific vector suppression is proposed, potential effects on predators and wider ecosystem are some of the first stakeholder questions. These are not the only Aedes vectors of human diseases, but are those for which SIT and genetic strategies are of most interest. They vary ecologically and in habitat origin, but both have behaviourally human-adapted forms with expanding ranges. The aquatic life stages are where predation is strongest due to greater resource predictability and limited escape opportunity. These vectors’ anthropic forms usually use ephemeral water bodies and man-made containers as larval habitats; predators that occur in these are mobile, opportunistic and generalist. No literature indicates that any predator depends on larvae of either species. As adults, foraging theory predicts these mosquitoes are of low profitability to predators. Energy expended hunting and consuming will mostly outweigh their energetic benefit. Moreover, as adult biomass is mobile and largely disaggregated, any predator is likely to be a generalist and opportunist. This work, which summarises much of the literature currently available on the predators of Ae. aegypti and Ae. albopictus, indicates it is highly unlikely that any predator species depends on them. Species-specific vector control to reduce nuisance and disease is thus likely to be of negligible or limited impact on non-target predators.

More related to this: