Differentiated impacts of human interventions on nature: Scaling the conversation on regulation of gene technologies

J. A. Heinemann, D. J. Paull, S. Walker and B. Kurenbach,  Elementa: Science of the Anthropocene,  9. 2021.

Biotechnology describes a range of human activities in medicine, agriculture, and environmental management. One biotechnology in particular, gene technology, continues to evolve both in capacity and potential to benefit and harm society. The purpose of this article is to offer a policy bridge from unproductive descriptions of gene technology to useful methods for identifying sources of significant biological and socioeconomic risk in complex food systems. Farmers and the public could be voluntarily and involuntarily interacting with new techniques of genome editing and gene silencing in entirely new ways, limiting the usefulness of previous gene technology histories to predict safety. What we believe is a more consistent, verifiable, and practical approach is to identify the critical control points that emerge where the scale effects of a human activity diverge between risk and safety. These critical control points are where technical experts can collaborate with publics with different expertise to identify and manage the technology. The use of technical terminology describing biochemical-level phenomena discourages publics that are not technical experts from contesting the embedded cultural perspectives and uncertainty in “scientific” concepts and prejudice the risk discourse by ignoring other issues of significance to society. From our perspective as gene technologists, we confront the use of pseudo-scale language in risk discourse and propose an escape path from clashes over whether risks that arise spontaneously (from nature) can be perfectly mimicked by gene technology to a discussion on how to best control the risks created by human activity. Scale is conceptually implicit and explicit in gene technology regulation, but there is no agreement about what scales are most useful to managing risk and social expectations. Both differentiated governance (risk-tiered) and responsible research and innovation models could accommodate the critical control points mechanism that we describe.


More related to this:

FNIH Panel on Gene Drive Regulation Emphasizes Need for Local Community Engagement

Regulatory experience and challenges for the release of GM insects

GENE DRIVE ORGANISMS: Implications for the environment and nature conservation

World Nature Conservation Day: Technology to Forge a Path for Nature Conservation and Communities

This Malaria Preventing Mosquito Is Not A GMO But Is A Science Boost For Nature – Will Activists Want To Block It?