Keywords: ethics

Governing Gene Drive Technologies: A Qualitative Interview Study

N. de Graeff, K. R. Jongsma, J. E. Lunshof and A. L. Bredenoord,  AJOB Empirical Bioethics,  13:107-124. 2022.
Gene drive technologies (GDTs) bias the inheritance of a genetic element within a population of non-human organisms, promoting its progressive spread across this population. If successful, GDTs may be used to counter intractable problems such as vector-borne diseases. A key issue ...
Keywords: , , , ,

Should we kill every mosquito on Earth?

J. Phelan,  LiveScience,  2022.
Before you grab that can of bug spray, know this: While some mosquitoes are dangerous to us, not all are. Even those that are sometimes harmful tend not to feed on humans, preferring honeydew, plant sap and nectar, according to Mosquito Joe, a mosquito control company. There are ...
Keywords: , , , ,

Regulation of genetically engineered (GE) mosquitoes as a public health tool: a public health ethics analysis

Z. Meghani,  Globalization and Health,  18:21. 2022.
In recent years, genetically engineered (GE) mosquitoes have been proposed as a public health measure against the high incidence of mosquito-borne diseases among the poor in regions of the global South. While uncertainties as well as risks for humans and ecosystems are entailed ...
Keywords: , , , ,

An Ethical Overview of the CRISPR-Based Elimination of Anopheles gambiae to Combat Malaria

I. J. Wise and P. Borry,  Journal of Bioethical Inquiry,  2022.
Approximately a quarter of a billion people around the world suffer from malaria each year. Most cases are located in sub-Saharan Africa where Anopheles gambiae mosquitoes are the principal vectors of this public health problem. With the use of CRISPR-based gene drives, the ...
Keywords: , , , ,

A preliminary framework for understanding the governance of novel environmental technologies: Ambiguity, indeterminateness and drift

F. Rabitz, M. Feist, M. Honegger, J. Horton, S. Jinnah and J. Reynolds,  Earth System Governance,  12:100134. 2022.
We propose a conceptual framework to explain why some technologies are more difficult to govern than others in global environmental governance. We start from the observation that some technologies pose transboundary environmental risks, some provide capacities for managing such ...
Keywords: , , , ,

Articulating ethical principles guiding Target Malaria’s engagement strategy

A. J. Roberts and D. Thizy,  Malaria Journal,  21:35. 2022.
Progress in gene drive research has engendered a lively discussion about community engagement and the ethical standards the work hinges on. While there is broad agreement regarding ethical principles and established best practices for conducting clinical public health research, ...
Keywords: , , , ,

Gene Editing Is Popular, But Controversial, Research Are

Relias,  RELIAS MEDIA,  2022.
Gene drive research carries great potential for controlling insect vectors of devastating diseases, but there are multiple unresolved ethical concerns. Unanticipated “downstream” effects on ecosystems, or in organisms that carry the gene drive machinery, are possible. To help ...
Keywords: , , , ,

Gene Drives in the U.K., U.S., and Australian Press (2015–2019): How a New Focus on Responsibility Is Shaping Science Communication

A. Stelmach, B. Nerlich and S. Hartley,  Science Communication,  10755470211072245. 2022.
Gene drive is a controversial biotechnology for pest control. Despite a commitment from gene drive researchers to responsibility and the key role of the media in debates about science and technology, little research has been conducted on media reporting of gene drive. We employ ...
Keywords: , , , ,

Ethical Considerations for Gene Drive: Challenges of Balancing Inclusion, Power and Perspectives

A. Kormos, G. C. Lanzaro, E. Bier, V. Santos, L. Nazare, J. Pinto, A. A. dos Santos and A. James,  Frontiers in Bioengineering and Biotechnology,  2022.
Progress in gene-drive research has stimulated discussion and debate on ethical issues including community engagement and consent, policy and governance, and decision-making involved in development and deployment. Many organizations, academic institutions, foundations, and ...
Keywords: , , , ,

Podcast: Malaria Gene Drive

S. Hartley, S. Neema and C. Opesen,  University of Exeter Business School,  2021.
Professor Sarah Hartley and her two colleagues in Uganda, Stella Neema and Chris Opesen discuss gene drive research for malaria control. Funded by British Academy and Wellcome trust, their work is to understand the social science challenges around the development of this kind of ...
Keywords: , , , ,

Small-scale release of non-gene drive mosquitoes in Burkina Faso: from engagement implementation to assessment, a learning journey

L. Pare Toe, N. Barry, A. D. Ky, S. Kekele, W. Meda, K. Bayala, M. Drabo, D. Thizy and A. Diabate,  Malaria Journal,  20:395. 2021.
This study provides a review of engagement activities relevant to field trials on non-gene drive genetically-modified mosquitoes as well as an assessment framework-using both qualitative and quantitative studies as well as an audit procedure. The latter was implemented to ...
Keywords: , , , ,

Calling the latest gene technologies ‘natural’ is a semantic distraction — they must still be regulated

J. A. Heinemann, D. J. Paull, S. Walker and B. Kurenbach,  The Conversation,  2021.
Legislators around the world are being asked to reconsider how to regulate the latest developments in gene technology, genome editing and gene silencing. Both the European Court of Justice and the New Zealand High Court have ruled that genome editing techniques should remain ...
Keywords: , , , ,

Knowing and Controlling: Engineering Ideals and Gene Drive for Invasive Species Control in Aotearoa New Zealand

C. H. Ross,  Nature Remade: Engineering Life, Envisioning Worlds,  2021.
On the islands of Aotearoa, also called New Zealand, invasive species have been a prominent and persistent concern for local ecosystems. Traditional methods of biological control, though, can be difficult to implement and often have harmful side- effects for the environment and ...
Keywords: , , , ,

2021 WHO guidelines on genetically modified mosquitoes

M. Makoni,  The Lancet Microbe,  2:e353. 2021.
On May 19, 2021, WHO updated its guidelines for research and development on genetically modified mosquitoes, which define the standards for decision-making about how and when testing should proceed and describe best practices to ensure that research done in a public health ...
Keywords: , , , ,

A new tool in the global fight against malaria

S. Laux,  Brighter World,  2021.
McMaster researchers with the Institute on Ethics & Policy for Innovation (IEPI) have played a key role in developing updated international guidelines that will inform research and development on genetically modified mosquitoes – an initiative that could significantly affect ...
Keywords: , , , ,

Living With the Limits of Our New Clerisy’s Knowledge

R. Fernandez,  PJ Media,  2021.
We are living in a strange time when reason has fallen short of human expectations and there is, once again, pressure to place our trust in faith. Leighton Woodhouse hit the nail on the head when he argued that we have appointed a New Clerisy to rule over us, not because they are ...
Keywords: , , , ,

What is wrong in extinguishing a species? Charting the Ethical Challenges of using Gene-Drive Technologies to eradicate A. gambiae vector populations

M. Annoni and T. Pievani,  Biolaw Journal-Rivista Di Biodiritto,  2021.
This article analyses three ethical arguments against the use of gene-drive technologies to control for, and possibly extinguish, a particular species of vector mosquitoes (Anopheles gambiae) causing the malaria infection. We conclude that none of these arguments is truly ...
Keywords: , , , ,

WHO releases new guidance for deployment of genetically modified mosquitoes

E. Henderson,  News Medical Life Sciences,  2021.
The World Health Organization (WHO) has released new guidance for the deployment of genetically modified (GM) mosquitoes to combat vector-borne diseases like malaria and dengue. GM mosquitoes may carry a gene that kills female progeny and the technology can be used against the ...
Keywords: , , , ,

Genetically modified mosquitoes; WHO issues new guidance for research

DTE Staff,  Down To Earth,  2021.
Genetically-modified mosquitoes or GMMs have been used across the world to control mosquitoes. GMMs have been able to bring down the population of the Aedes aegypti by 90 per cent in countries like Brazil, the Cayman Islands, Panama and Malaysia. But there have never been any ...
Keywords: , , , ,

WHO issues new guidance for research on genetically modified mosquitoes to fight malaria and other vector-borne diseases

WHO,  reliefweb,  2021.
New guidance from the World Health Organization (WHO) sets essential standards to inform future research and development on genetically modified mosquitoes, particularly in addressing issues relating to ethics, safety, affordability and effectiveness. Malaria and other ...
Keywords: , , , ,

Guidance framework for testing of genetically modified mosquitoes, second edition

WHO,  WHO-TDR,  2021.
For more than 2 decades, scientists have been working to harness the promise of molecular biology to develop genetically modified mosquitoes (GMMs) for use as public health tools to prevent the transmission of vector-borne diseases. Responding to a need for additional standards ...
Keywords: , , , ,

The legal regulation of gene drive technologies

C. Elves,  Univeristy of Oxford,  2021.
Gene drive technologies purport to provide a panacea and yet in doing so present unprecedented risks that threaten to change, potentially irreversibly, the way in which we live in the world. Gene drive technologies raise questions about what ends societies ought to seek for their ...
Keywords: , , , ,

CRISPR-Cas and Its Wide-Ranging Applications: From Human Genome Editing to Environmental Implications, Technical Limitations, Hazards and Bioethical Issues

R. Piergentili, A. Del Rio, F. Signore, F. U. Ronchi, E. Marinelli and S. Zaami,  Cells,  10:24. 2021.
The CRISPR-Cas system is a powerful tool for in vivo editing the genome of most organisms, including man. During the years this technique has been applied in several fields, such as agriculture for crop upgrade and breeding including the creation of allergy-free foods, for ...
Keywords: , , , ,

Experimenting with co-development: a qualitative study of gene drive research for malaria control in Mali

S. Hartley, K. Ledingham, R. Owen, S. Leonelli, S. Diarra and S. Diop,  Social Science and Medicine,  2021.
Our findings suggest co-development is opening up previously expert-dominated spaces as researchers attempt to take responsibility for the societal implications of their work. However, its main function is as a project management tool to enable and instrumentally support ...
Keywords: , , , ,

Ethics of Genome Editing

European Group on Ethics,  European Group on Ethics in Science and New Technologies,  2021.
This Opinion addresses the profound ethical questions raised and revived by them. It analyses various domains of application, from human health to animal experimentation, from livestock breeding to crop variety and to gene drives. With its wide view across areas, it identifies ...
Keywords: , , , ,

The ethical scientist in a time of uncertainty

L. Zoloth,  Cell,  184:1430-1439. 2021.
Using the example of gene drives for malaria control to explore the problem of deep uncertainty in biomedical research, I argue that profound uncertainty is an essential feature. Applying the language and presumptions of the discipline of philosophical ethics, I describe three ...
Keywords: , , , ,

Differentiated impacts of human interventions on nature: Scaling the conversation on regulation of gene technologies

J. A. Heinemann, D. J. Paull, S. Walker and B. Kurenbach,  Elementa: Science of the Anthropocene,  9. 2021.
Biotechnology describes a range of human activities in medicine, agriculture, and environmental management. One biotechnology in particular, gene technology, continues to evolve both in capacity and potential to benefit and harm society. The purpose of this article is to offer a ...
Keywords: , , , ,

Ugandan stakeholder hopes and concerns about gene drive mosquitoes for malaria control: new directions for gene drive risk governance

S. Hartley, R. D. J. Smith, A. Kokotovich, C. Opesen, T. Habtewold, K. Ledingham, B. Raymond and C. B. Rwabukwali,  Malaria Journal,  20:149. 2021.
The African Union’s High-Level Panel on Emerging Technologies identified gene drive mosquitoes as a priority technology for malaria elimination. The first field trials are expected in 5–10 years in Uganda, Mali or Burkina Faso. In preparation, regional and international ...
Keywords: , , , ,

Experts’ moral views on gene drive technologies: a qualitative interview study

N. de Graeff, K. R. Jongsma and A. L. Bredenoord,  BMC Medical Ethics,  22:25. 2021.
Gene drive technologies (GDTs) promote the rapid spread of a particular genetic element within a population of non-human organisms. Potential applications of GDTs include the control of insect vectors, invasive species and agricultural pests. Whether, and if so, under what ...
Keywords: , , , ,

Hybrid mosquitoes? Evidence from rural Tanzania on how local communities conceptualize and respond to modified mosquitoes as a tool for malaria control

M. F. Finda, F. O. Okumu, E. Minja, R. Njalambaha, W. Mponzi, B. B. Tarimo, P. Chaki, J. Lezaun, A. H. Kelly and N. Christofides,  Malaria Journal,  20:134. 2021.
Different forms of mosquito modifications are being considered as potential high-impact and low-cost tools for future malaria control in Africa. Although still under evaluation, the eventual success of these technologies will require high-level public acceptance. Understanding ...
Keywords: , , , ,

The science & ethics of gene drive technology from a conservation & development perspective

Renew Europe,  Renew Europe,  2021.
This hearing intends to examine gene-drive technology and its possible impacts, including unintended ones and reveal the complexity of an unknown technology with inherent uncertainties. Scientists from different backgrounds in the field of gene-drive research will present most ...
Keywords: , , , ,

A Code of Ethics for Gene Drive Research

G. J. Annas, C. L. Beisel, K. Clement, A. Crisanti, S. Francis, M. Galardini, R. Galizi, J. Grünewald, G. Immobile, A. S. Khalil, R. Müller, V. Pattanayak, K. Petri, L. Paul, L. Pinello, A. Simoni, C. Taxiarchi and J. K. Joung,  The CRISPR Journal,  2021.
A code of ethics can be a useful tool for all parties involved in the development and regulation of gene drives and can be used to help ensure that a balanced analysis of risks, benefits, and values is taken into consideration for the interest of society and humanity. We have ...
Keywords: , , , ,

In Our Image: The Ethics of CRISPR Genome Editing

J. C. Eissenberg,  Biomolecular Concepts,  12:1-7. 2021.
Here, I discuss the ethics surrounding the transformative CRISPR/Cas9mediated genome editing technology in the contexts of human genome editing to eradicate genetic disease and of gene drive technology to eradicate animal vectors of human disease.
Keywords: , , , ,

How to engage communities on a large scale? Lessons from World Mosquito Program in Rio de Janeiro, Brazil [version 2; peer review: 1 approved, 2 approved with reservations]

G. B. Costa, R. Smithyman, S. L. O'Neill and L. A. Moreira,  Gates Open Research,  2021.
Here we discuss and analyse the framework for community engagement implemented by the WMP in Brazil, during the large-scale deployment of the method in the municipalities of Niterói and Rio de Janeiro, Brazil. Our experience indicates that the community engagement work for ...
Keywords: , , , ,

Playing God and tampering with nature: popular labels for real concerns in synthetic biology

L. Carter, A. Mankad, E. V. Hobman and N. B. Porter,  Transgenic Research,  2021.
We present the findings from a large Australian study (N = 4593) which suggests ‘playing God’ objections and their variants can be multilayered and, at times, accompanied by meaningful information about risk perceptions. We use qualitative analysis of ope
Keywords: , , , ,

Co‐developing a common glossary with stakeholders for engagement on new genetic approaches for malaria control in a local African setting

E. Chemonges Wanyama, B. Dicko, L. Pare Toe, M. B. Coulibaly, N. Barry, K. Bayala Traore, A. Diabate, M. Drabo, J. K. Kayondo, S. Kekele, S. Kodio, A. D. Ky, R. R. Linga, E. Magala, W. I. Meda, S. Mukwaya, A. Namukwaya, B. Robinson, H. Samoura, K. Sanogo,  Malaria Journal,  20:53. 2021.
Scientific terminologies are mainly lacking in local languages, yet when research activities involve international partnership, the question of technical jargon and its translation is crucial for effective and meaningful communication with stakeholders. Target Malaria, a ...
Keywords: , , , ,

Exploring Gene Drive Technologies in Agriculture, Biodiversity and Human Disease

The GBIRd Partnership and The GeneConvene Global Collaborative,  Gene Drive Research Forum,  2021.
The GBIRd Partnership and The GeneConvene Global Collaborative recently collaborated through The Gene Drive Research Forum, to create and produce an engaging conversation between Drs. Fred Gould and Charles Godfray about gene drive technologies – the potential benefits and ...
Keywords: , , , ,

Application of the Relationship-Based Model to Engagement for Field Trials of Genetically Engineered Malaria Vectors

A. Kormos, G. C. Lanzaro, E. Bier, G. Dimopoulos, J. M. Marshall, J. Pinto, A. Aguiar dos Santos, A. Bacar, H. Sousa Pontes Sacramento Rompão and A. A. James,  The American Journal of Tropical Medicine and Hygiene,  2020.
Although guidelines and recommendations for engagement for gene drives have recently been described, we argue here that communities and stakeholders should lead the planning, development, and implementation phases of engagement. The RBM provides a new approach to the development ...
Keywords: , , , ,

Scientists Set a Path for Field Trials of Gene Drive Organisms

M. Aguilera,  UC San Diego News Center,  2020.
The modern rise of gene drive research, accelerated by CRISPR-Cas9 gene editing technology, has led to transformational waves rippling across science. Gene drive organisms (GDOs), developed with select traits that are genetically engineered to spread through a population, have ...
Keywords: , , , ,

Engineered Gene Drives: Ecological, Environmental, and Societal Concerns

J. Kuzma,  GMOs: Implications for Biodiversity Conservation and Ecological Processes,  2020.
This chapter overviews the types, purposes, and potential impacts of gene drive organisms (GDOs) and discusses challenges with foreseeing and assessing these impacts prior to their environmental release. It concludes with a few examples of risk analysis methods and governance ...
Keywords: , , , ,

Transformation and slippage in co-production ambitions for global technology development: The case of gene drive

K. Ledingham and S. Hartley,  Environmental Science & Policy,  116:78-85. 2020.
Co-production is an increasingly popular framework for knowledge generation, evaluation and decision making. Despite its potential to open up decisions and practices to the input of others, co-production regularly falls short of its transformative ambitions. Through documentary ...
Keywords: , , , ,

Gene drives, species, and compassion for individuals in conservation biology

Y. Rohwer,  Ethics, Policy and Environment,  2020.
In this paper I argue that these compassionate conservationists have a moral obligation to support the investigation and development of genetic modification technologies because of their potential to minimize suffering and eliminate killing in conservation. Furthermore, I will ...
Keywords: , , , ,

The ethical way to alter organisms

K. Esvelt,  Boston Globe,  2020.
As my colleagues and I first described in 2014, we can use CRISPR genome editing to duplicate the most powerful form of “gene drive,” a ubiquitous natural phenomenon that happens when a genetic change is inherited more frequently than usual. Encode the CRISPR machinery next ...
Keywords: , , , ,

Ethics and vector-borne diseases

WHO,  WHO Guidance,  2020.
The guidance was developed by an international group of experts in vector control, infectious disease ethics, maternal and child health, ecology and climate change, research and vaccine development, and public health communication. It examines a broad range of ethical ...
Keywords: , , , ,

Bednets or Biotechnology: To Rescue Current Persons or Research for the Future?

D. E. Callies,  Fudan Journal of the Humanities and Social Sciences,  14. 2020.
After an exploration of the duty to rescue and cost-effectiveness analysis, I suggest we look towards the literature on intergenerational justice for a justifiable answer to the question of how we ought to allocate our malaria resources.
Keywords: , , , ,

Socrates Untenured: Ethics, Experts, and the Public in the Synthetic Age

C. Preston,  ISSUES in Science and Technology,  2020.
C. Preston (2020). Three tools have transformed biotechnology over the past decade and a half. Gene reading has made it possible to quickly sequence the genome of any living creature. Gene synthesis has made it possible to construct DNA sequences in the lab from constituent ...
Keywords: , , , ,

Genome Editing 2020: Ethics and Human Rights in Germline Editing in Humans and Gene Drives in Mosquitoes

G. J. Annas,  American Journal of Law and Medicine,  46:143-165. 2020.
G. J. Annas (2020). American Journal of Law and Medicine. doi: 10.1177/0098858820933492. I begin with a discussion of so far disastrously unsuccessful attempts to regulate germline editing in humans, including a summary of the first application of germline genome editing in ...
Keywords: , , , ,

Gene Drive Webinars -ENSSER, CSS, VDW and SC

European Network of Scientists for Social and Environmental Responsibility,  ,  2020.
This series of 5 Webinars by some of the authors of the interdisciplinary Gene Drive Report (2019) and were organised by four organisations of independent scientists: the European Network of Scientists for Social and Environmental Responsibility (ENSSER), Critical Scientists ...
Keywords: , , , ,

Species Extinction & the Case for a Global Moratorium on Gene Drives

M. Imken,  ARC,  2020.
One million species are currently threatened with extinction, and humanity faces the challenge of stopping the sixth mass extinction in the history of our planet. Yet a new technology called Gene Drive enables human beings to reprogram wild species by genetic engineering and to ...
Keywords: , , , ,

Gene drives: benefits, risks, and possible applications

A. Deplazes-Zemp, U. Grossniklaus, F. Lefort, P. Müller, J. Romeis, A. Rüegsegger, N. Schoenenberger and E. Spehn,  Swiss Academies Factsheets,  15. 2020.
Gene drives are genetic elements that skew the pattern of inheritance of a given characteristic in sexually reproducing organisms. They can be used to spread a characteristic that can alter or even reduce the numbers of individuals in wild populations of a certain species. As ...
Keywords: , , , ,

Islands as Laboratories: Indigenous Knowledge and Gene Drives in the Pacific

R. I. Taitingfong,  Human Biology,  91:179-188. 2020.
This article argues that the genetic engineering technology known as gene drive must be evaluated in the context of the historic and ongoing impacts of settler colonialism and military experimentation on indigenous lands and peoples. After defining gene drive and previewing some ...
Keywords: , , , ,

Position Paper on Integrated Vector Management: Strengthening AU Members’ Regulatory Capacities for Responsible Research Towards Elimination of Malaria in Africa

African Union Development Agency - NEPAD,  AUDA-NEPAD,  2020.
Africa continues to bear a heavy brunt of the malaria which is a disease transmitted by the female Anopheles mosquito. Thousands of lives, mostly of young children, are lost every year; which undermines efforts deployed at various levels for increased life expectancy and improved ...
Keywords: , , , ,

Bioethical issues in genome editing by CRISPR-Cas9 technology

F. B. Ayanoglu, A. E. Elcin and Y. M. Elcin,  Turkish Journal of Biology,  44:110-120. 2020.
Genome editing technologies have led to fundamental changes in genetic science. Among them, CRISPR-Cas9 technology particularly stands out due to its advantages such as easy handling, high accuracy, and low cost. It has made a quick introduction in fields related to humans, ...
Keywords: , , , ,

‘Gene Drive’ to curb malaria raises ethical questions as well

Gyanedra Nath Mitra,  The Pioneer,  2020.
A new technology ‘Gene Drive’ for mosquito control is currently confined to the laboratory since it raises an ethical question, if such a technology could in future be misused to the detriment of humanity.
Keywords: , , , ,

Regulation of GM Organisms for Invasive Species Control

H. J. Mitchell and D. Bartsch,  Frontiers in Bioengineering and Biotechnology,  7:1-11. 2020.
Invasive species can cause significant harm to the environment, agriculture, and human health, but there are often very limited tools available to control their populations. Gene drives (GD) have been proposed as a new tool which could be used to control or eliminate such ...
Keywords: , , , ,

Gene Drive Film

Save Our Seeds,  ,  2020.
This is a video based on the findings in GENE DRIVES: A report on their science, applications, social aspects, ethics and regulations which you can find here.  There was a Symposium on May 24, 2019 that covers the topics in the report and the presentations at that symposium can ...
Keywords: , , , ,

A typology of community and stakeholder engagement based on documented examples in the field of novel vector control

C. E. Schairer, R. Taitingfong, O. S. Akbari and C. S. Bloss,  PLoS Neglected Tropical Diseases,  13:e0007863. 2019.
Background Despite broad consensus on the importance of community and stakeholder engagement (CSE) for guiding the development, regulation, field testing, and deployment of emerging vector control technologies (such as genetically engineered insects), the types of activities ...
Keywords: , , , ,

Articulating ‘free, prior and informed consent’ (FPIC) for engineered gene drives

George, D. R., T. Kuiken and J. A. Delborne,  Proceedings of the Royal Society B: Biological Sciences,  286:20191484.. 2019.
Recent statements by United Nations bodies point to free, prior and informed consent (FPIC) as a potential requirement in the development of engineered gene drive applications. As a concept developed in the context of protecting Indigenous rights to self-determination in land ...
Keywords: , , , ,

Exterminator genes: The right to say no to ethics dumping

Bassey-Orovwuje, M., J. Thomas and T. Wakeford,  Development,  62:121-127. 2019.
The scientific-industrial complex is promoting a new wave of genetically modified organisms, in particular gene drive organisms, using the same hype with which they tried to persuade society that GMOs would be a magic bullet to solve world hunger. The Gates Foundation claims that ...
Keywords: , , , ,

A cross-sectional survey of biosafety professionals regarding genetically modified insects

O’Brochta, D. A., W. K. Tonui, B. Dass and S. James,  Applied Biosafety,  2019:1-9. 2019.
Background:Genetic technologies such as gene editing and gene drive create challenges for existing frameworks used to assess risk and make regulatory determinations by governments and institutions. Insect genetic technologies including transgenics, gene editing, and gene drive ...
Keywords: , , , ,

Gene Drives and new genetic manipulation in agriculture

Terra de Direitos,  Terra de Direitos,  2019.
Gene drives are forms of genetic editing or manipulation of live organisms. They are the most dangerous forms of transgenics which edit genetic characteristics without necessarily including a new gene, but rather manipulating existing genes of live organisms, i.e. live organism ...
Keywords: , , , ,

Efforts to enhance safety measures for CRISPR/Cas-based gene drive technology in Japan

T. Tanaka, N. Tanaka, Y. Nagano, H. Kanuka, D. S. Yamamoto, N. Yamamoto, E. Nanba and T. Nishiuch,  Journal of Environment and Safety,  2019.
Gene drive is a powerful system that can spread a desirable genetic trait into an entire species and/or population of a certain region, bypassing Mendelian rules of inheritance. Recently, one of the genome editing technologies, CRISPR/Cas, has been developed, making it easier to ...
Keywords: , , , ,

Two unresolved issues in community engagement for field trials of genetically modified mosquitoes

D. B. Resnik,  Pathogens and Global Health,  113:238-245. 2019.
There is an emerging consensus among scientists, ethicists, and public health officials that substantive and effective engagement with communities and the wider public is required prior to releasing genetically modified mosquitoes into the environment.
Keywords: , , , ,

Gene Drive Mosquitoes: Ethics, Environment and Efficacy

L. Wilburn,  ScienceInnovationUnion,  2019.
The Bill and Melinda Gates foundation has recently donated over $75 million to fund gene drive mosquito research by Target Malaria , a consortium that aims to develop technology for malaria control. The first planned release of gene drive mosquitoes is set to happen over the next ...
Keywords: , , , ,

Gene Drive Symposium-Critical Science Switzerland

Critical Scientists Switzerland; European Network of Scientists for Social and Environmental Responsibility; Vereinigung Deutscher Wissenschaftler,  ,  2019.

Keywords: , , , ,

Gene Drives: A report on their science, applications, social aspects, ethics and regulations

H. Dressel,  Critical Scientists Switzerland; European Network of Scientists for Social and Environmental Responsibility; Vereinigung Deutscher Wissenschaftler,  2019.
Engineered Gene Drives are a new form of genetic modification that provides the tools for permanently modifying or potentially even eradicating species or populations in the wild. Unlike the previous genetically modified organisms (GMOs), gene drive organisms (GDOs) are not meant ...
Keywords: , , , ,

Gene drives and the international biodiversity regime

F. Rabitz,  Review of European, Comparative & International Environmental Law,  2019.
Gene drives are genetic modifications designed for rapidly diffusing traits throughout a target population. They are currently being proposed as biological control agents to combat, for instance, invasive alien species and disease vectors. They also raise concerns regarding their ...
Keywords: , , , ,

Gene drive organisms: What Africa should know about actors, motives and threats to biodiversity and food systems

Sirinathsinghji, E.,  African Centre for Biodiversity.,  2019.
In this briefing paper, we set out the key issues that our governments should have addressed with African civil society before endorsing positions and setting the benchmark for Africa-wide policy. In this regard, we point out that, while the impetus for the AU position might well ...
Keywords: , , , ,

The ethical landscape of gene drive research

Callies, DE,  Bioethics,  33:1091-1097. 2019.
Gene drive technology has immense potential. The ability to bypass the laws of Mendelian inheritance and almost ensure the transmission of specific genetic material to future generations creates boundless possibilities. But alongside these boundless possibilities are major social ...
Keywords: , , , ,

CRISPR-Cas9. The greatest advancement in genetic edition techniques requires an ethical reflection

Gomez-Tatay, LA, J.,  Cuadernos De Bioetica,  30:171-185. 2019.
The adaptation of the CRISPR system as a genetic editing tool has led to a revolution in many fields of application, as this technique is considerably faster, easier to perform and more efficient than predecessor techniques. However, some of these applications raise objective ...
Keywords: , , , ,

Promises and perils of gene drives: Navigating the communication of complex, post-normal science

Brossard, DB, Pam; Gould, Fred; Wirz, Christopher D.,  Proceedings of the National Academy of Sciences of the United States of America,  116:7692-7697. 2019.
In November of 2017, an interdisciplinary panel discussed the complexities of gene drive applications as part of the third Sackler Colloquium on “The Science of Science Communication.” The panel brought together a social scientist, life scientist, and journalist to discuss ...
Keywords: , , , ,

A Question of Consent: Exterminator Mosquitoes in Burkina Faso

ETC group,  ,  2019.
Target Malaria’s planned release of GMO mosquitos is step toward release of gene drive mosquitoes, a high-risk technology aimed at the elimination of entire species. Hundreds of organizations have demanded a moratorium on the use of this technology outside of ...
Keywords: , , , ,

The Release of Genetically Engineered Mosquitoes in Burkina Faso: Bioeconomy of Science, Public Engagement and Trust in Medicine

Beisel, UG, J. K.,  African Studies Review,  62:164-173. 2019.
Malaria, which is transmitted by mosquitoes, continues to be responsible for a significant number of disease episodes and childhood deaths on the African continent. A variety of mosquito control strategies are currently inplace, but since case numbers are rising again, and drug ...
Keywords: , , , ,

Governing extinction in the era of gene editing

Monast, JJ,  North Carolina Law Review,  97:1329-1358. 2019.
CRISPR-Cas9 genome-editing technology (“CRISPR”) offers a potential solution for some of the world’s critical conservation challenges. Scientists are harnessing CRISPR to expand genetic diversity of endangered species, control invasive species, or enhance species’ ...
Keywords: , , , ,

Gene driving the farm: who decides, who owns, and who benefits?

Montenegro de Wit, M,  Agroecology and Sustainable Food Systems,  43:1054-1074. 2019.
This commentary essay explores the social and ecological implications of gene-driving agriculture.
Keywords: , , , ,

Informed consent and community engagement in open field research: lessons for gene drive science

Singh, JA,  BMC Medical Ethics,  20:54. 2019.
The development of the CRISPR/Cas9 gene editing system has generated new possibilities for the use of gene drive constructs to reduce or suppress mosquito populations to levels that do not support disease transmission. Despite this prospect, social resistance to genetically ...
Keywords: , , , ,

An introduction to the proceedings of the environmental release of engineered pests: Building an international governance framewor

Brown, Z. S., L. Carter and F. Gould,  BMC Proceedings,  12:10. 2018.
In October 2016, a two-day meeting of 65 academic, government and industry professionals was held at North Carolina State University for early-stage discussions about the international governance of gene drives: potentially powerful new technologies that can be used for the ...
Keywords: , , , ,

Means and ends of effective global risk assessments for genetic pest management

Turner, G., C. Beech and L. Roda,  BMC Proceedings,  12:13. 2018.
The development and use of genetic technologies is regulated by countries according to their national laws and governance structures. Legal frameworks require comprehensive technical evidence to be submitted by an applicant on the biology of the organism, its safety to human, ...
Keywords: , , , ,

Towards inclusive social appraisal: risk, participation and democracy in governance of synthetic biology

Stirling, A., K. R. Hayes and J. Delborne,  BMC Proceedings,  12:15. 2018.
Frameworks that govern the development and application of novel products, such as the products of synthetic biology, should involve all those who are interested or potentially affected by the products. The governance arrangements for novel products should also provide a ...
Keywords: , , , ,

Public engagement pathways for emerging GM insect technologies

Burgess, M. M., J. D. Mumford and J. V. Lavery,  BMC Proceedings,  12:12. 2018.
Policy and management related to the release of organisms generated by emerging biotechnologies for pest management should be informed through public engagement. Regulatory decisions can be conceptually distinguished into the development of frameworks, the assessment of the ...
Keywords: , , , ,

Regulation of emerging gene technologies in India

Ahuja, V.,  BMC Proceedings,  12:14. 2018.
In India, genetically modified organisms (GMOs) and the products thereof are regulated under the “Rules for the manufacture, use, import, export & storage of hazardous microorganisms, genetically engineered organisms or cells, 1989” (referred to as Rules, 1989) notified under ...
Keywords: , , , ,

Population Engineering | Gene Drive by CRISPR-CAS9

SciToons,  ,  2018.
The CRISPR-CAS9 genome editing technology is opening up previously inconceivable possibilities for the manipulation of organisms. Our ethical discussion appears to be far behind the pace of technological development. In this new SciToons video, we address how CRISPR-CAS9 can be ...
Keywords: , , , ,

Gene Drives

SciLine,  SciLine,  2018.
For many years now, scientists have been able to alter genes inside microbial, plant, and animal cells to change organisms’ traits, creating, for example, plants that produce their own protective insecticides and fish that grow to maturity almost twice as fast as normal. But ...
Keywords: , , , ,

The ethical implications of population suppression and the irreversibility of gene drives

J. Kim,  International Journal of Life Sciences Research,  2018.
This paper aims to examine the current situation by presenting important ethical arguments that include Chardin’s principle of irreversibility and Weiss’ beliefs on intergenerational equity, ideals upheld by the United Nations
Keywords: , , , ,

Regulating animals with gene drive systems: lessons from the regulatory assessment of a genetically engineered mosquito

Z. Meghani and J. Kuzma,  Journal of Responsible Innovation,  5:S203-S222. 2018.