Keywords: governance

Evaluating Gene Drive Approaches for Public Benefit

M. R. Santos,  GMOs: Implications for Biodiversity Conservation and Ecological Processes,  2020.
Gene drive approaches—those which bias inheritance of a genetic element in a population of sexually reproducing organisms—have the potential to provide important public benefits. The spread of selected genetic elements in wild populations of organisms may help address certain ...
Keywords: , , , , , , ,

Engineered Gene Drives: Ecological, Environmental, and Societal Concerns

J. Kuzma,  GMOs: Implications for Biodiversity Conservation and Ecological Processes,  2020.
This chapter overviews the types, purposes, and potential impacts of gene drive organisms (GDOs) and discusses challenges with foreseeing and assessing these impacts prior to their environmental release. It concludes with a few examples of risk analysis methods and governance ...
Keywords: , , , , , , ,

Engineering biological diversity: the international governance of synthetic biology, gene drives, and de-extinction for conservation

J. L. Reynolds,  Current Opinion in Environmental Sustainability,  49:1-6. 2020.
In the face of insufficient progress in conserving and restoring biodiversity, the in situ use of advanced genetic modification, gene drives, and other biotechnologies for conservation purposes are being considered, researched, and developed. This paper introduces the methods, ...
Keywords: , , , , , , ,

Brave New Planet: Reshaping Nature Through Gene Drives

E. Lander,  Brave New Planet,  2020.
A new technology, called gene drives, has the power to spread any genetic instructions you wish across an entire animal or plant species in the wild. It might let us restore ecosystems ravaged by invasive species, or help species adapt to climate change. And, it might save ...
Keywords: , , , , , , ,

Engineered Gene Drives: Policy and Regulatory Considerations Webinar Series by The GeneConvene Global Collaborative October-December 2020

Hector Quemada and David O'Brochta,  GeneConvene Global Collaborative,  2020.
In this series of webinars the regulatory and policy challenges of moving new innovative genetic biocontrol products such as gene drive technologies to the field will be featured. Each seminar will be ~60 minutes in length followed by questions and answers.
Keywords: , , , , , , ,

Engineered Gene Drives: Regulatory and Policy Considerations Webinar Series by The GeneConvene Global Collaborative October-December 2020

Hector Quemada and David O'Brochta,  GeneConvene Global Collaborative,  2020.
This is series of webinars the regulatory and policy challenges of moving new innovative genetic biocontrol products such as gene drive technologies to the field will be featured.
Keywords: , , , , , , ,

GeneConvene Global Collaborative Webinar Series Oct-Dec 2020

Hector Quemada and David O'Brochta,  GeneConvene Global Collaborative,  2020.
This is series of webinars the regulatory and policy challenges of moving new innovative genetic biocontrol products such as gene drive technologies to the field will be featured.
Keywords: , , , , , , ,

Global citizen deliberation on genome editing

J. S. Dryzek, D. Nicol, S. Niemeyer, S. Pemberton, N. Curato, A. Bächtiger, P. Batterham, B. Bedsted, S. Burall, M. Burgess, G. Burgio, Y. Castelfranchi, H. Chneiweiss, G. Church, M. Crossley, J. de Vries, M. Farooque, M. Hammond, B. He, R. Mendonça, J.,  Science,  369:1435. 2020.
Here we show how, as the global governance vacuum is filled, deliberation by a global citizens' assembly should play a role, for legitimate and effective governance.
Keywords: , , , , , , ,

Responsible innovation in biotechnology: Stakeholder attitudes and implications for research policy

P. Roberts, J. Herkert and J. Kuzma,  Elementa,  2020.
Using a mixed methods approach, we analyzed the attitudes of different biotechnology stakeholders, particularly those working in areas related to genetically modified organisms (GMOs) in agriculture and the environment, towards the principles and practices of RI. Homogenous focus ...
Keywords: , , , , , , ,

Global Governing Bodies: A Pathway for Gene Drive Governance for Vector Mosquito Control

A. Kelsey, D. Stillinger, T. B. Pham, J. Murphy, S. Firth and R. Carballar-Lejarazú,  American Journal of Tropical Medicine and Hygiene,  2020.
We examined the current institutions and governing bodies among various continents that could have an impact on gene drive governance or the potential to adapt to its future use. Possible governance strategies also are proposed that seek to bridge gaps and promote an ethically ...
Keywords: , , , , , , ,

Providing a policy framework for responsible gene drive research: an analysis of the existing governance landscape and priority areas for further research

D. Thizy, I. Coche and J. de Vries,  Wellcome Open Research,  2020.
D. Thizy, I. Coche and J. de Vries (2020). Wellcome Open Research. doi: 10.12688/wellcomeopenres.16023.1 In this manuscript, we review the existing regulatory landscape around gene drive research and map areas of convergence and divergence, as well as gaps in relation to ...
Keywords: , , , , , , ,

Who is afraid of genetically modified mosquitoes?

G. Odogwu,  The PUNCH,  2020.
Genetically Modified Organisms have raised concerns in our clime, the same way they have in other countries of the world – where a clear line is drawn between the pro and the anti-GMO citizens. Nonetheless, this modern biotechnological technique is still at its infancy here. As ...
Keywords: , , , , , , ,

Mosquito district workshop focuses on Keys trials

S. Matthis,  KEYSWEEKLY,  2020.
Now that the Oxitec “Friendly Mosquito” trials have been approved by the federal and state governments, it’s up to the Florida Keys Mosquito Control District to decide if, when and where to embrace the technology said to decrease the chances of mosquito-borne diseases such ...
Keywords: , , , , , , ,

Genetically modified mosquitoes to be released in Florida and Texas

O. Ron,  The Jerusalem Post,  2020.
A plan to release 750 million genetically modified mosquitoes in Florida and Texas has been approved, The Guardian reported. According to the plan, the Aedes aegypti mosquitoes will be released into the wild, as they contain a special protein that would kill female offspring, ...
Keywords: , , , , , , ,

Before genetically modified mosquitoes are released, we need a better EPA

N. Kofler and J. Kuzma,  The Boston Globe,  2020.
While the attention of the American public has rightfully been focused on the COVID-19 pandemic, its associated racial disparities, and broader issues of structural racism, the US government made a serious public health decision — one that could affect our health and our ...
Keywords: , , , , , , ,

Are Genetically Modified Mosquitoes Coming To Florida?

M. Taylor,  Y100,  2020.
I'm not even going to lie, mosquitoes should be classified under domestic terrorism. The flying, biting bugs you can barely see wreak havoc on my life every single summer. I'm not sure if I'm allergic to them, but whenever I'm bit by them, that area of my skin swells up. It's the ...
Keywords: , , , , , , ,

The Florida Keys are one step closer to getting genetically modified mosquitoes

D. Goodhue,  Miami Herald,  2020.
An international biotech company is one step closer to being able to release genetically modified mosquitoes in the Florida Keys. The Florida Department of Agriculture and Consumer Services this week granted Oxitec an experimental use permit to release potentially millions of ...
Keywords: , , , , , , ,

Sustainability as a framework for considering gene drive mice for invasive rodent eradication

Barnhill-Dilling, SKS, M.; Blondel, D. V.; Godwin, J.,  Sustainability,  11:1334. 2019.
Gene drives represent a dynamic and controversial set of technologies with applications that range from mosquito control to the conservation of biological diversity on islands. Currently, gene drives are being developed in mice that may one day serve as an important tool for ...
Keywords: , , , , , , ,

Gene Drives

SciLine,  SciLine,  2018.
For many years now, scientists have been able to alter genes inside microbial, plant, and animal cells to change organisms’ traits, creating, for example, plants that produce their own protective insecticides and fish that grow to maturity almost twice as fast as normal. But ...
Keywords: , , , , , , ,

Gene Drives

SciLine,  SciLine,  2018.
For many years now, scientists have been able to alter genes inside microbial, plant, and animal cells to change organisms’ traits, creating, for example, plants that produce their own protective insecticides and fish that grow to maturity almost twice as fast as normal. But ...
Keywords: , , , , , , ,

Anomaly handling and the politics of gene drives

S. W. Evans and M. J. Palmer,  Journal of Responsible Innovation,  5:S223-S242. 2018.
Decisions about the development and use of gene drives are framing broader debates about the need for fundamental changes to biotechnology regulatory systems. We summarize this debate and describe how gene drives are being constructed as potential anomalies within the regulatory ...
Keywords: , , , , , , ,

Harnessing gene drive

J. Min, A. L. Smidler, D. Najjar and K. M. Esvelt,  Journal of Responsible Innovation,  5. 2018.
Determining whether, when, and how to develop gene drive interventions responsibly will be a defining challenge of our time. Here we describe capabilities, safeguards, applications, and opportunities relevant to gene drive technologies.
Keywords: , , , , , , ,

A roadmap for gene drives: using institutional analysis and development to frame research needs and governance in a systems context

J. Kuzma, F. Gould, Z. Brown, J. Collins, J. Delborne, E. Frow, K. Esvelt, D. Guston, C. Leitschuh, K. Oye and S. Stauffer,  Journal of Responsible Innovation,  5:S13-S39. 2018.
This paper reports on a workshop held in February 2016 to explore the complex intersection of political, economic, ethical, and ecological risk issues associated with gene drives. Workshop participants were encouraged to use systems thinking and mapping to describe the ...
Keywords: , , , , , , ,

Mapping research and governance needs for gene drives

J. Delborne, J. Kuzma, F. Gould, E. Frow, C. Leitschuh and J. Sudweeks,  Journal of Responsible Innovation,  5:S4-S12. 2018.
This special issue represents both deep and broad thinking about gene drives. The papers were first drafted nearly two years ago, and since then have been reviewed and revised to flesh out key arguments and take account of ongoing developments in the field. This field has moved ...
Keywords: , , , , , , ,

Gene drives and the expanding horizon of governance

E. Fisher,  Journal of Responsible Innovation,  5:S1-S3. 2018.
Like other areas of emerging science and technology that trigger prolonged public debate over their transformative prospects, gene drives simultaneously generate prospects for new knowledge, hoped-for benefits, and formidable concerns. Their ability to bias inheritance of and in ...
Keywords: , , , , , , ,

Keywords: governance

Evaluating Gene Drive Approaches for Public Benefit

M. R. Santos,  GMOs: Implications for Biodiversity Conservation and Ecological Processes,  2020.
Gene drive approaches—those which bias inheritance of a genetic element in a population of sexually reproducing organisms—have the potential to provide important public benefits. The spread of selected genetic elements in wild populations of organisms may help address certain ...
Keywords: , , , , , , ,

Engineered Gene Drives: Ecological, Environmental, and Societal Concerns

J. Kuzma,  GMOs: Implications for Biodiversity Conservation and Ecological Processes,  2020.
This chapter overviews the types, purposes, and potential impacts of gene drive organisms (GDOs) and discusses challenges with foreseeing and assessing these impacts prior to their environmental release. It concludes with a few examples of risk analysis methods and governance ...
Keywords: , , , , , , ,

Engineering biological diversity: the international governance of synthetic biology, gene drives, and de-extinction for conservation

J. L. Reynolds,  Current Opinion in Environmental Sustainability,  49:1-6. 2020.
In the face of insufficient progress in conserving and restoring biodiversity, the in situ use of advanced genetic modification, gene drives, and other biotechnologies for conservation purposes are being considered, researched, and developed. This paper introduces the methods, ...
Keywords: , , , , , , ,

Brave New Planet: Reshaping Nature Through Gene Drives

E. Lander,  Brave New Planet,  2020.
A new technology, called gene drives, has the power to spread any genetic instructions you wish across an entire animal or plant species in the wild. It might let us restore ecosystems ravaged by invasive species, or help species adapt to climate change. And, it might save ...
Keywords: , , , , , , ,

Engineered Gene Drives: Policy and Regulatory Considerations Webinar Series by The GeneConvene Global Collaborative October-December 2020

Hector Quemada and David O'Brochta,  GeneConvene Global Collaborative,  2020.
In this series of webinars the regulatory and policy challenges of moving new innovative genetic biocontrol products such as gene drive technologies to the field will be featured. Each seminar will be ~60 minutes in length followed by questions and answers.
Keywords: , , , , , , ,

Engineered Gene Drives: Regulatory and Policy Considerations Webinar Series by The GeneConvene Global Collaborative October-December 2020

Hector Quemada and David O'Brochta,  GeneConvene Global Collaborative,  2020.
This is series of webinars the regulatory and policy challenges of moving new innovative genetic biocontrol products such as gene drive technologies to the field will be featured.
Keywords: , , , , , , ,

GeneConvene Global Collaborative Webinar Series Oct-Dec 2020

Hector Quemada and David O'Brochta,  GeneConvene Global Collaborative,  2020.
This is series of webinars the regulatory and policy challenges of moving new innovative genetic biocontrol products such as gene drive technologies to the field will be featured.
Keywords: , , , , , , ,

Global citizen deliberation on genome editing

J. S. Dryzek, D. Nicol, S. Niemeyer, S. Pemberton, N. Curato, A. Bächtiger, P. Batterham, B. Bedsted, S. Burall, M. Burgess, G. Burgio, Y. Castelfranchi, H. Chneiweiss, G. Church, M. Crossley, J. de Vries, M. Farooque, M. Hammond, B. He, R. Mendonça, J.,  Science,  369:1435. 2020.
Here we show how, as the global governance vacuum is filled, deliberation by a global citizens' assembly should play a role, for legitimate and effective governance.
Keywords: , , , , , , ,

Responsible innovation in biotechnology: Stakeholder attitudes and implications for research policy

P. Roberts, J. Herkert and J. Kuzma,  Elementa,  2020.
Using a mixed methods approach, we analyzed the attitudes of different biotechnology stakeholders, particularly those working in areas related to genetically modified organisms (GMOs) in agriculture and the environment, towards the principles and practices of RI. Homogenous focus ...
Keywords: , , , , , , ,

Global Governing Bodies: A Pathway for Gene Drive Governance for Vector Mosquito Control

A. Kelsey, D. Stillinger, T. B. Pham, J. Murphy, S. Firth and R. Carballar-Lejarazú,  American Journal of Tropical Medicine and Hygiene,  2020.
We examined the current institutions and governing bodies among various continents that could have an impact on gene drive governance or the potential to adapt to its future use. Possible governance strategies also are proposed that seek to bridge gaps and promote an ethically ...
Keywords: , , , , , , ,

Providing a policy framework for responsible gene drive research: an analysis of the existing governance landscape and priority areas for further research

D. Thizy, I. Coche and J. de Vries,  Wellcome Open Research,  2020.
D. Thizy, I. Coche and J. de Vries (2020). Wellcome Open Research. doi: 10.12688/wellcomeopenres.16023.1 In this manuscript, we review the existing regulatory landscape around gene drive research and map areas of convergence and divergence, as well as gaps in relation to ...
Keywords: , , , , , , ,

Who is afraid of genetically modified mosquitoes?

G. Odogwu,  The PUNCH,  2020.
Genetically Modified Organisms have raised concerns in our clime, the same way they have in other countries of the world – where a clear line is drawn between the pro and the anti-GMO citizens. Nonetheless, this modern biotechnological technique is still at its infancy here. As ...
Keywords: , , , , , , ,

Mosquito district workshop focuses on Keys trials

S. Matthis,  KEYSWEEKLY,  2020.
Now that the Oxitec “Friendly Mosquito” trials have been approved by the federal and state governments, it’s up to the Florida Keys Mosquito Control District to decide if, when and where to embrace the technology said to decrease the chances of mosquito-borne diseases such ...
Keywords: , , , , , , ,

Genetically modified mosquitoes to be released in Florida and Texas

O. Ron,  The Jerusalem Post,  2020.
A plan to release 750 million genetically modified mosquitoes in Florida and Texas has been approved, The Guardian reported. According to the plan, the Aedes aegypti mosquitoes will be released into the wild, as they contain a special protein that would kill female offspring, ...
Keywords: , , , , , , ,

Before genetically modified mosquitoes are released, we need a better EPA

N. Kofler and J. Kuzma,  The Boston Globe,  2020.
While the attention of the American public has rightfully been focused on the COVID-19 pandemic, its associated racial disparities, and broader issues of structural racism, the US government made a serious public health decision — one that could affect our health and our ...
Keywords: , , , , , , ,

Are Genetically Modified Mosquitoes Coming To Florida?

M. Taylor,  Y100,  2020.
I'm not even going to lie, mosquitoes should be classified under domestic terrorism. The flying, biting bugs you can barely see wreak havoc on my life every single summer. I'm not sure if I'm allergic to them, but whenever I'm bit by them, that area of my skin swells up. It's the ...
Keywords: , , , , , , ,

The Florida Keys are one step closer to getting genetically modified mosquitoes

D. Goodhue,  Miami Herald,  2020.
An international biotech company is one step closer to being able to release genetically modified mosquitoes in the Florida Keys. The Florida Department of Agriculture and Consumer Services this week granted Oxitec an experimental use permit to release potentially millions of ...
Keywords: , , , , , , ,

Sustainability as a framework for considering gene drive mice for invasive rodent eradication

Barnhill-Dilling, SKS, M.; Blondel, D. V.; Godwin, J.,  Sustainability,  11:1334. 2019.
Gene drives represent a dynamic and controversial set of technologies with applications that range from mosquito control to the conservation of biological diversity on islands. Currently, gene drives are being developed in mice that may one day serve as an important tool for ...
Keywords: , , , , , , ,

Gene Drives

SciLine,  SciLine,  2018.
For many years now, scientists have been able to alter genes inside microbial, plant, and animal cells to change organisms’ traits, creating, for example, plants that produce their own protective insecticides and fish that grow to maturity almost twice as fast as normal. But ...
Keywords: , , , , , , ,

Gene Drives

SciLine,  SciLine,  2018.
For many years now, scientists have been able to alter genes inside microbial, plant, and animal cells to change organisms’ traits, creating, for example, plants that produce their own protective insecticides and fish that grow to maturity almost twice as fast as normal. But ...
Keywords: , , , , , , ,

Anomaly handling and the politics of gene drives

S. W. Evans and M. J. Palmer,  Journal of Responsible Innovation,  5:S223-S242. 2018.
Decisions about the development and use of gene drives are framing broader debates about the need for fundamental changes to biotechnology regulatory systems. We summarize this debate and describe how gene drives are being constructed as potential anomalies within the regulatory ...
Keywords: , , , , , , ,

Harnessing gene drive

J. Min, A. L. Smidler, D. Najjar and K. M. Esvelt,  Journal of Responsible Innovation,  5. 2018.
Determining whether, when, and how to develop gene drive interventions responsibly will be a defining challenge of our time. Here we describe capabilities, safeguards, applications, and opportunities relevant to gene drive technologies.
Keywords: , , , , , , ,

A roadmap for gene drives: using institutional analysis and development to frame research needs and governance in a systems context

J. Kuzma, F. Gould, Z. Brown, J. Collins, J. Delborne, E. Frow, K. Esvelt, D. Guston, C. Leitschuh, K. Oye and S. Stauffer,  Journal of Responsible Innovation,  5:S13-S39. 2018.
This paper reports on a workshop held in February 2016 to explore the complex intersection of political, economic, ethical, and ecological risk issues associated with gene drives. Workshop participants were encouraged to use systems thinking and mapping to describe the ...
Keywords: , , , , , , ,

Mapping research and governance needs for gene drives

J. Delborne, J. Kuzma, F. Gould, E. Frow, C. Leitschuh and J. Sudweeks,  Journal of Responsible Innovation,  5:S4-S12. 2018.
This special issue represents both deep and broad thinking about gene drives. The papers were first drafted nearly two years ago, and since then have been reviewed and revised to flesh out key arguments and take account of ongoing developments in the field. This field has moved ...
Keywords: , , , , , , ,

Gene drives and the expanding horizon of governance

E. Fisher,  Journal of Responsible Innovation,  5:S1-S3. 2018.
Like other areas of emerging science and technology that trigger prolonged public debate over their transformative prospects, gene drives simultaneously generate prospects for new knowledge, hoped-for benefits, and formidable concerns. Their ability to bias inheritance of and in ...
Keywords: , , , , , , ,