Resistance to natural and synthetic gene drive systems

Resistance to natural and synthetic gene drive systems

Tags: , , , , , ,
T. A. R. Price, N. Windbichler, R. L. Unckless, A. Sutter, J.-N. Runge, P. A. Ross, A. Pomiankowski, N. L. Nuckolls, C. Montchamp-Moreau, N. Mideo, O. Y. Martin, A. Manser, M. Legros, A. M. Larracuente, L. Holman, J. Godwin, N. Gemmell, C. Courret, A. Buc,  Journal of Evolutionary Biology,  2020.

Abstract Scientists are rapidly developing synthetic gene drive elements intended for release into natural populations. These are intended to control or eradicate disease vectors and pests, or to spread useful traits through wild populations for disease control or conservation purposes. However, a crucial problem for gene drives is the evolution of resistance against them, preventing their spread. Understanding the mechanisms by which populations might evolve resistance is essential for engineering effective gene drive systems. This review summarizes our current knowledge of drive resistance in both natural and synthetic gene drives. We explore how insights from naturally occurring and synthetic drive systems can be integrated to improve the design of gene drives, better predict the outcome of releases and understand genomic conflict in general.

Gene drive: progress and prospects

Gene drive: Evolved and synthetic

A synthetic sex ratio distortion system for the control of the human malaria mosquito

Socrates Untenured: Ethics, Experts, and the Public in the Synthetic Age

A synthetic homing endonuclease-based gene drive system in the human malaria mosquito