Keywords: population suppression

Demographic feedbacks can hamper the spatial spread of a gene drive

F. Debarre and L. Girardin,  bioRxiv,  2021.12.01.470771. 2021.
This paper is concerned with a reactiond diffusion system modeling the fixation and the invasion in a population of a gene drive (an allele biasing inheritance, increasing its own transmission to offspring). In our model, the gene drive has a negative effect on the fitness of ...
Keywords: , , , ,

Gene drive that results in addiction to a temperature-sensitive version of an essential gene triggers population collapse in Drosophila

G. Oberhofer, T. Ivy and B. A. Hay,  Proceedings of the National Academy of Sciences,  118:e2107413118. 2021.
One strategy for population suppression seeks to use gene drive to spread genes that confer conditional lethality or sterility, providing a way of combining population modification with suppression. Stimuli of potential interest could be introduced by humans, such as an otherwise ...
Keywords: , , , ,

Propagation of seminal toxins through binary expression gene drives can suppress polyandrous populations

J. Hurtado, S. Revale and L. M. Matzkin,  bioRxiv,  2021.11.23.469777. 2021.
Gene drives can be highly effective in controlling a target population by disrupting a female fertility gene. To spread across a population, these drives require that disrupted alleles be largely recessive so as not to impose too high of a fitness penalty. We argue that this ...
Keywords: , , , ,

High-resolution in situ analysis of Cas9 germline transcript distributions in gene-drive Anopheles mosquitoes

G. Terradas, A. Hermann, A. A. James, W. McGinnis and E. Bier,  G3-Genes Genomes Genetics,  2021.
Gene drives are programmable genetic elements that can spread beneficial traits into wild populations to aid in vector-borne pathogen control. Two different drives have been developed for population modification of mosquito vectors. The Reckh drive (vasa-Cas9) in Anopheles ...
Keywords: , , , ,

Two years of laboratory studies on the non gene drive genetically modified sterile male mosquitoes concluded successfully in Mali

M. Coulibaly,  Target Malaria,  2021.
The Target Malaria Mali team at the Malaria Research and Training Centre (MRTC) based at the University of Sciences, Techniques and Technologies of Bamako (USTTB) is proud to have been the first Malian research team to work on non gene drive genetically modified sterile male ...
Keywords: , , , ,

Malaria modeling and optimal control using sterile insect technique and insecticide-treated net

L. Cai, L. Bao, L. Rose, J. Summers and W. Ding,  Applicable Analysis,  2021.
We investigate a malaria transmission model with SEIR (susceptible-exposed-infected-recovered) classes for the human population, SEI (susceptible-exposed-infected) classes for the wild mosquitoes and an additional class for the sterile mosquitoes. The basic reproduction number ...
Keywords: , , , ,

Will freeing ourselves (forever) from mosquitoes soon be a realizable “dream”? Pros and cons of an epochal turning point – breaking latest news

Annonymous,  Breaking Latest News,  2021.
Also true for a dangerous insect like the mosquito: due to the pathologies of which vector, such as the malaria, the dengue o la yellow fever, every year in the world about 800 thousand people die. There are therefore quite a few reasons to want to get rid of it, not just the ...
Keywords: , , , ,

Prevalence and molecular characterization of Wolbachia in field-collected Aedes albopictus, Anopheles sinensis, Armigeres subalbatus, Culex pipiens and Cx. tritaeniorhynchus in China

Y. Yang, Y. He, G. Zhu, J. Zhang, Z. Gong, S. Huang, G. Lu, Y. Peng, Y. Meng, X. Hao, C. Wang, J. Sun and S. Shang,  PLOS Neglected Tropical Diseases,  15:e0009911. 2021.
Wolbachia are maternally transmitted intracellular bacteria that can naturally and artificially infect arthropods and nematodes. Recently, they were applied to control the spread of mosquito-borne pathogens by causing cytoplasmic incompatibility (CI) between germ cells of females ...
Keywords: , , , ,

Conditional knockdown of transformer in sheep blow fly suggests a role in repression of dosage compensation and potential for population suppression

M. E. Williamson, Y. Yan and M. J. Scott,  PLOS Genetics,  17:e1009792. 2021.
In the fruit fly Drosophila melanogaster and in the mosquito Anopheles gambiae, a single gene (Sxl in D. melanogaster, fle in A. gambiae) controls the development of female-specific tissues and X chromosome dosage compensation, which is the equalization of X-linked gene products ...
Keywords: , , , ,

A gene drive does not spread easily in populations of the honey bee parasite Varroa destructor

N. R. Faber, A. B. Meiborg, G. R. McFarlane, G. Gorjanc and B. A. Harpur,  Apidologie,  2021.
Varroa mites (Varroa destructor) are the most significant threat to beekeeping worldwide. They are directly or indirectly responsible for millions of colony losses each year. Beekeepers are somewhat able to control varroa populations through the use of physical and chemical ...
Keywords: , , , ,

Gene drive and RNAi technologies: a bio-cultural review of next-generation tools for pest wasp management in New Zealand

S. Palmer, P. K. Dearden, O. R. Mercier, A. King-Hunt and P. J. Lester,  Journal of the Royal Society of New Zealand,  1-18. 2021.
There is a global need for novel, next-generation technologies and techniques to manage pest species. We review work on potential step-changing technologies for large landscape (>1000 hectares) pest management of social Vespula wasps. We also review M?ori perspectives on these ...
Keywords: , , , ,

Discrete dynamical models on Wolbachia infection frequency in mosquito populations with biased release ratios

Y. Shi and B. Zheng,  Journal of Biological Dynamics,  2021.
We develop two discrete models to study how supplemental releases affect the Wolbachia spreading dynamics in cage mosquito populations. The first model focuses on the case when only infected males are released at each generation. This release strategy has been proved to be ...
Keywords: , , , ,

Gene drive escape from resistance depends on mechanism and ecology

F. Cook, J. J. Bull and R. Gomulkiewicz,  bioRxiv,  2021.08.30.458221. 2021.
Gene drives can potentially be used to suppress pest populations, and the advent of CRISPR technology has made it feasible to engineer them in many species, especially insects. What remains largely unknown for implementations is whether anti-drive resistance will evolve to block ...
Keywords: , , , ,

Gene drives gaining speed

E. Bier,  Nature Reviews Genetics,  2021.
Gene drives are selfish genetic elements that are transmitted to progeny at super-Mendelian (>50%) frequencies. Recently developed CRISPR–Cas9-based gene-drive systems are highly efficient in laboratory settings, offering the potential to reduce the prevalence of vector-borne ...
Keywords: , , , ,

Host-associated differentiation of target pests should be assessed before using gene drive as a pest control tool – an opinion

R. F. Medina,  Entomologia Experimentalis et Applicata,  2021.
Abstract Advances in gene editing have made feasible the potential use of gene drive for pest control. Ecological risk assessments will certainly be required before this technology can be released into open fields. In this article I argue for the importance to include ...
Keywords: , , , ,

Scientists eradicate malaria-transmitting mosquitos using genetic engineering which make females infertile in new study which takes one step closer to wiping out the disease worldwide.

C. Ciaccia,  Daily Mail,  2021.
Malaria kills nearly 500,000 people globally every year, but scientists have now figured out a way to use CRISPR gene-editing technology to make female mosquitoes infertile, described as a 'game-changer' for ending the deadly disease. Researchers from Imperial College London, ...
Keywords: , , , ,

Genetic engineering may rid world of malaria-transmitting mosquitoes

Y. Steinbuch,  New York Post,  2021.
Scientists have eradicated a population of malaria-transmitting mosquitoes by using genetic engineering to make the females infertile — in what the lead researcher called a possible “game-changer in bringing about malaria elimination.” A team of researchers — led by ...
Keywords: , , , ,

Gene-Drive Technology Could Decimate Malaria-Carrying Mosquitoes–Scientists Use CRISPR to Modify the Insects’ Genes

J. Henry,  Tech Times,  2021.
Gene-drive technology can now suppress the growing numbers of mosquitoes that carry malaria. A group of researchers discovered that this gene-editing technique can eradicate the vectors that could rapidly populate in a particular environment. A mosquito (Anopheles albimanus) is ...
Keywords: , , , ,

Malaria-carrying mosquitoes could be bred out of existence using ‘gene drive’ technology

A. Wilkins,  METRO,  2021.
Malaria-carrying mosquitoes have been eliminated using ‘gene drive’ technology in a nature-like environment, in a world-first study. By altering a gene that blocks female mosquito reproduction, and allowing that gene to spread, researchers found they could ensure complete ...
Keywords: , , , ,

Scientists reveal controversial genetically modified mosquitoes in high-security lab

The Frontier Post,  The Frontier Post,  2021.
Many years of additional research will be needed to prove the approach works and the mosquitoes would be safe to release into the wild. The project would also require regulatory approval and agreement by local residents in areas where those mosquitoes live, mostly in sub-Saharan ...
Keywords: , , , ,

Genetic engineering test with mosquitoes ‘may be game changer’ in eliminating malaria

L. Geddes,  The Guardian,  2021.
Scientists have successfully wiped out a population of malaria-transmitting mosquitoes by using a radical form of genetic engineering to render the females infertile – in the most advanced and largest ever test of use of the technology to fight the disease. As well as bringing ...
Keywords: , , , ,

How An Altered Strand Of DNA Can Cause Malaria-Spreading Mosquitoes To Self-Destruct

R. Stein,  NPR,  2021.
For the first time, scientists have shown that a new kind of genetic engineering can crash populations of malaria-spreading mosquitoes. In the landmark study, published Wednesday in the journal Nature Communications, researchers placed the genetically modified mosquitoes in a ...
Keywords: , , , ,

A lab experiment shows that we could engineer malaria-carrying mosquitoes to kill themselves off

A. Micu,  ZME Science,  2021.
A new paper showcases how genetic engineering can be used to cause populations of malaria-spreading mosquitoes to self-destroy. An international research effort has shown, in the context of a lab experiment, that male mosquitoes engineered to carry a certain strand of DNA can ...
Keywords: , , , ,

Malarial mosquitoes suppressed in experiments that mimic natural environments

H. Dunning,  Phys Org,  2021.
Researchers have shown "gene drive" technology, which spreads a genetic modification blocking female reproduction, works in natural-like settings. The team, led by researchers from Imperial College London, Polo GGB and Liverpool School of Tropical Medicine were able to suppress ...
Keywords: , , , ,

Gene-drive suppression of mosquito populations in large cages as a bridge between lab and field

A. Hammond, P. Pollegioni, T. Persampieri, A. North, R. Minuz, A. Trusso, A. Bucci, K. Kyrou, I. Morianou, A. Simoni, T. Nolan, R. Müller and A. Crisanti,  Nature Communications,  12:4589. 2021.
CRISPR-based gene-drives targeting the gene doublesex in the malaria vector Anopheles gambiae effectively suppressed the reproductive capability of mosquito populations reared in small laboratory cages. To bridge the gap between laboratory and the field, this gene-drive ...
Keywords: , , , ,

The Aedes aegypti (Diptera: Culicidae) hsp83 Gene Promoter Drives Strong Ubiquitous DsRed and ZsGreen Marker Expression in Transgenic Mosquitoes

S. H. Webster and M. J. Scott,  Journal of Medical Entomology,  2021.
Transgenic strains of the mosquito disease vector Aedes aegypti (L.) are being developed for population suppression or modification. Transgenic mosquitoes are identified using fluorescent protein genes. Here we describe DsRed and ZsGreen marker genes driven by the constitutive ...
Keywords: , , , ,

Combating mosquito-borne diseases using genetic control technologies

G.-H. Wang, S. Gamez, R. R. Raban, J. M. Marshall, L. Alphey, M. Li, J. L. Rasgon and O. S. Akbari,  Nature Communications,  12:4388. 2021.
Mosquito-borne diseases, such as dengue and malaria, pose significant global health burdens. Unfortunately, current control methods based on insecticides and environmental maintenance have fallen short of eliminating the disease burden. Scalable, deployable, genetic-based ...
Keywords: , , , ,

Gene drive that results in addiction to a temperature sensitive version of an essential gene triggers population collapse in Drosophila

G. Oberhofer, B. Hay and T. Ivy,  bioRxiv,  2021.07.03.451005. 2021.
One strategy for population suppression seeks to use gene drive to spread genes that confer conditional lethality or sterility, providing a way of combining population modification with suppression. Stimuli of potential interest could be introduced by humans, such as an otherwise ...
Keywords: , , , ,

Wolbachia-mediated sterility suppresses Aedes aegypti populations in the urban tropics

Project Wolbachia-Singapore Consortium,  medRxiv,  2021.
Incompatible insect technique (IIT) via releases of male Wolbachiainfected mosquitoes is a promising tool for dengue control. In a three-year trial in Singaporean high-rise housing estates, we demonstrated that Wolbachia-based IIT dramatically reduces both wildtype Aedes aegypti ...
Keywords: , , , ,

New biocontrol research to help prevent mice plagues

Anonymous,  The National Tribune,  2021.
Scientists at the University of Adelaide are partnering with the CSIRO and the Centre for Invasive Species Solutions on breakthrough genetic biocontrol research to help control mice populations and prevent future mice plagues. The three-year research program will identify fast ...
Keywords: , , , ,

Experimental demonstration of tethered gene drive systems for confined population modification or suppression

M. Metzloff, E. Yang, S. Dhole, A. G. Clark, P. W. Messer and J. Champer,  bioRxiv,  2021.05.29.446308. 2021.
Tethered drive systems, in which a locally confined gene drive provides the CRISPR nuclease needed for a homing drive, could provide a solution to this problem, offering the power of a homing drive and confinement of the supporting drive. Here, we demonstrate the engineering of a ...
Keywords: , , , ,

A homing suppression gene drive with multiplexed gRNAs maintains high drive conversion efficiency and avoids functional resistance alleles

E. Yang, M. Metzloff, A. M. Langmüller, A. G. Clark, P. W. Messer and J. Champer,  bioRxiv,  2021.05.27.446071. 2021.
Gene drives are engineered alleles that can bias inheritance in their favor, allowing them to spread throughout a population. They could potentially be used to modify or suppress pest populations, such as mosquitoes that spread diseases. CRISPR/Cas9 homing drives, which copy ...
Keywords: , , , ,

Scientists want to alter rodent genes to prevent mice plagues

P. Hannon,  The Sydney Morning Herald,  2021.
Mice plagues, such as the one ravaging parts of inland NSW, could become a thing of the past if scientists succeed in modifying the genes of the rodents so that populations crash before they can take off. Paul Thomas, a researcher at the University of Adelaide, is part of an ...
Keywords: , , , ,

Modeling and analysis of the implementation of the Wolbachia incompatible and sterile insect technique for mosquito population suppression.

B. Zheng, J. S. Yu and J. Li,  Siam Journal on Applied Mathematics,  81:718-740. 2021.
Mathematical analysis may offer guidance in designing effective mass release strategies for the area-wide application of this Wolbachia incompatible and sterile insect technique in the future. The two most crucial concerns in designing release strategies are how often and in what ...
Keywords: , , , ,

Village hears from experts as genetic-mosquito release experiment nears.

J. McCarthy,  KEYSWEEKLY,  2021.
On March 18, Islamorada Village Council heard from several independent scientists who discussed information and issues behind the genetically modified mosquitoes for population and disease suppression. The scientists collectively said they’re neither for nor against the ...
Keywords: , , , ,

Double drives and private alleles for localised population genetic control

K. Willis and A. Burt,  PLOS Genetics,  17. 2021.
ynthetic gene drive systems that are able to spread though populations because they are inherited at a greater-than-Mendelian rate have the potential to form the basis for new, highly efficient pest control measures. The most efficient such strategies use natural gene flow to ...
Keywords: , , , ,

The ethical scientist in a time of uncertainty

L. Zoloth,  Cell,  184:1430-1439. 2021.
Using the example of gene drives for malaria control to explore the problem of deep uncertainty in biomedical research, I argue that profound uncertainty is an essential feature. Applying the language and presumptions of the discipline of philosophical ethics, I describe three ...
Keywords: , , , ,

Ultra-conserved sequences in the genomes of highly diverse Anopheles mosquitoes, with implications for malaria vector control

S. M. O'Loughlin, A. J. Forster, S. Fuchs, T. Dottorini, T. Nolan, A. Crisanti and A. Burt,  G3-Genes Genomes Genetics,  2021.
Here we search for conserved sequences of 18bp and over in an alignment of 21 Anopheles genomes, spanning an evolutionary timescale of 100 million years, and characterise the resulting sequences according to their location and function. Over 8000 ultra-conserved elements were ...
Keywords: , , , ,

Meiotic Cas9 expression mediates genotype conversion in the male and female mouse germline.

A. J. Weitzel, H. A. Grunwald, R. Levina, V. M. Gantz, S. M. Hedrick, E. Bier and K. L. Cooper,  2021.03.16.435716,  2021.
We previously showed that such a system of genotype conversion from heterozygous to homozygous after a sequence targeted CRISPR/Cas9 double strand DNA break is feasible in the female mouse germline. In the male germline, however, all double strand breaks were instead repaired by ...
Keywords: , , , ,

Evading resistance to gene drives

R. Gomulkiewicz, M. L. Thies and J. J. Bull,  Genetics,  217. 2021.
Here, we develop mathematical and computational models to identify conditions under which suppression drives will evade resistance, even if resistance is present initially. Previous models assumed resistance is allelic to the drive. We relax this assumption and show that linkage ...
Keywords: , , , ,

Mosquito anxiety prompts query from congressman

T. Java,,  2021.
Anxiety among some residents over the pending release of hundreds of millions of genetically modified mosquitoes next month in undisclosed locations throughout the Florida Keys has prompted Congressman Carlos Gimenez to seek answers from the U.S. Environmental Protection Agency. ...
Keywords: , , , ,

In Uganda, genetically modified mosquitoes bring hope and fear

Anonymous,  africanews,  2021.
Scientists here are investigating whether populations of the malaria-carrying insects can be reduced by genetic modification. They're looking at the viability of releasing large numbers of genetically modified mosquitos into the wild to influence future generations. The study ...
Keywords: , , , ,

Genetically modified mosquitoes for better health

D. Devis,  COSMOS,  2021.
One method of preventing these mosquito-born diseases is to use insecticides to kill the mozzies and remove them, but sometimes this only works as a short term solution, or has unintended devasting effects on the ecosystem. Another method for decreasing the number of ...
Keywords: , , , ,

Tensions rise as GM mosquito release nears in Florida Keys

T. O'Hara,,  2021.
Tensions seem to be rising as a planned release of genetically modified mosquitoes nears. The British-based biotech company Oxitec plans to release genetically modified Aedes aegypti mosquitoes in the Florida Keys sometime after April, but has yet to disclose exact locations in ...
Keywords: , , , ,

Quantifying the risk of vector-borne disease transmission attributable to genetically modified vectors

G. R. Hosack, A. Ickowicz and K. R. Hayes,  Royal Society Open Science,  8:201525. 2021.
The relative risk of disease transmission caused by the potential release of transgenic vectors, such as through sterile insect technique or gene drive systems, is assessed with comparison with wild-type vectors. The probabilistic risk framework is demonstrated with an assessment ...
Keywords: , , , ,

Florida Keys moves forward with genetically modified mosquitoes

H. Vela,,  2021.
The feared GMO mosquitoes are not going away. Opponents of the technology fear the date of the release in the Florida Keys is getting closer, and they are not ready for the possible repercussions of the experiment. The fight over whether or not to release genetically modified ...
Keywords: , , , ,

When and where will millions of mosquitoes be released? Here are details for Florida Keys

D. Goodhue,  Miami Herald,  2021.
The Florida Keys Mosquito Control District announced this week a wide and vague planned range of deployment for the lab-designed mosquitoes — neighborhoods from mile marker 10 to 93. The trial is being conducted by British biotech company Oxitec. It’s a method approved by the ...
Keywords: , , , ,

Mosquito trial will begin in April, but Keys locations won’t be disclosed

S. Matthis,  KEYSWEEKLY,  2021.
FKMCD spokesman Chad Huff wrote in an email, “The physical location of each box is still being finalized. Since most will be situated on private property at owner request, FKMCD-Oxitec will NOT be providing specific addresses due to privacy concerns and protection of project ...
Keywords: , , , ,

Modeling impact and cost-effectiveness of gene drives for malaria elimination in the Democratic Republic of the Congo

N. Metchanun, C. Borgemeister, G. Amzati, J. von Braun, M. Nikolov, P. Selvaraj and J. Gerardin,  medRxiv,  2020.06.29.20142760. 2021.
Using a spatially explicit, agent-based model of malaria transmission in eight representative provinces of the Democratic Republic of the Congo, we predict the impact and cost-effectiveness of integrating driving-Y gene drive mosquitoes in malaria elimination strategies that ...
Keywords: , , , ,

Oxitec gears up for test releases

T. O'Hara,,  2021.
The United Kingdom-based biotech company Oxitec will soon announce the test locations and timetable for releasing its genetically modified mosquitoes in the Florida Keys.
Keywords: , , , ,

Exploring Gene Drive Technologies in Agriculture, Biodiversity and Human Disease

The GBIRd Partnership and The GeneConvene Global Collaborative,  Gene Drive Research Forum,  2021.
The GBIRd Partnership and The GeneConvene Global Collaborative recently collaborated through The Gene Drive Research Forum, to create and produce an engaging conversation between Drs. Fred Gould and Charles Godfray about gene drive technologies – the potential benefits and ...
Keywords: , , , ,

CRISPR and the splice to survive: New gene-editing technology could be used to save species from extinction—or to eliminate them.

E. Kolbert,  New Yorker,  2021.
About a year ago, not long before the pandemic began, I paid a visit to the center, which is an hour southwest of Melbourne. The draw was an experiment on a species of giant toad known familiarly as the cane toad. The toad was introduced to Australia as an agent of pest control, ...
Keywords: , , , ,

Double drives and private alleles for localised population genetic control

K. Willis and A. Burt,  bioRxiv,  2021.01.08.425856. 2021.
In this paper we propose and model a series of low threshold double drive designs for population suppression, each consisting of two constructs, one imposing a reproductive load on the population and the other inserted into a differentiated locus and controlling the drive of the ...
Keywords: , , , ,

Next-generation tools to control biting midge populations and reduce pathogen transmission

P. Shults, L. W. Cohnstaedt, Z. N. Adelman and C. Brelsfoard,  Parasites and Vectors,  14:31. 2021.
Biting midges of the genus Culicoides transmit disease-causing agents resulting in a significant economic impact on livestock industries in many parts of the world. Localized control efforts, such as removal of larval habitat or pesticide application, can be logistically ...
Keywords: , , , ,

Mosquito Sexual Selection and Reproductive Control Programs

L. J. Cator, C. A. S. Wyer and L. C. Harrington,  Trends in Parasitology,  37:330-339. 2021.
The field of mosquito mating biology has experienced a considerable expansion in the past decade. Recent work has generated many key insights about specific aspects of mating behavior and physiology. Here, we synthesize these findings and classify swarming mosquito systems as ...
Keywords: , , , ,

Control of malaria-transmitting mosquitoes using gene drives

T. Nolan,  Philosophical Transactions of the Royal Society B: Biological Sciences,  376:20190803. 2020.
In this article, I will discuss the relative merits of this type of gene drive, as well as barriers to its technical development and to its deployment in the field as malaria control. This article is part of the theme issue ‘Novel control strategies for mosquito-borne ...
Keywords: , , , ,

Targeting female flight for genetic control of mosquitoes

D. Navarro-Payá, I. Flis, M. A. E. Anderson, P. Hawes, M. Li, O. S. Akbari, S. Basu and L. Alphey,  PLOS Neglected Tropical Diseases,  14:e0008876. 2020.
The yellow fever mosquito and the Southern house mosquito are important vectors of infectious diseases. Given their widespread presence across tropical and subtropical regions of the world and the increased risk of spread due to global warming there is a growing need for ...
Keywords: , , , ,

Modelling the Wolbachia incompatible insect technique: strategies for effective mosquito population elimination

D. E. Pagendam, B. J. Trewin, N. Snoad, S. A. Ritchie, A. A. Hoffmann, K. M. Staunton, C. Paton and N. Beebe,  BMC Biology,  18:13. 2020.
We introduce a simple Markov population process model for studying mosquito populations subjected to a Wolbachia-IIT programme which exhibit an unstable equilibrium threshold. The model is used to study, in silico, scenarios that are likely to yield a successful elimination ...
Keywords: , , , ,

The promise of CRISPR and gene drive systems to end malaria in Africa

E. Gomez-Diaz,  ARRIGE ORG,  2020.
Presentation by Elena Gómez Díaz (IPBLN-CSIC, Granada, Spain) at the ARRIGE 2020 meeting on "The promise of CRISPR and gene drive systems to end malaria in Africa". Discussion is included at the end of the Ruud de Maagd presentation.
Keywords: , , , ,

Gene drives, species, and compassion for individuals in conservation biology

Y. Rohwer,  Ethics, Policy and Environment,  2020.
In this paper I argue that these compassionate conservationists have a moral obligation to support the investigation and development of genetic modification technologies because of their potential to minimize suffering and eliminate killing in conservation. Furthermore, I will ...
Keywords: , , , ,

When Extinction is Warranted: Invasive Species, Suppression-Drives, and the Worst-Case Scenario

A. C. Thresher,  Ethics, Policy and Environment,  2020.
The focus of this paper is on one such risk ? the danger of a suppression-drive escaping containment and wiping out the target species globally. Here, I argue that in most cases this risk is significant enough to warrant holding off on the technology. In some cases, however, we ...
Keywords: , , , ,

Gene Drives: A Controversial Tool to Fight Malaria

H. Albert,,  2020.
The possibility of creating gene drives was introduced into the scientific community in 2003 by Austin Burt, a professor at Imperial College London. Burt was studying ‘selfish genes’ that can copy themselves into a specific target DNA sequence. He suggested that these genes, ...
Keywords: , , , ,

Expert advises farmers to adopt gene drive-based pest control technology

S. Thompson,  naija247news,  2020.
Dr Rose Gidado, County Coordinator, Open Forum on Agricultural Biotechnology(OFAB), has advised farmers to adopt the gene drive-based pest control technology. Gidado, also Deputy Director, National Biotechnology Development Agency (NABDA), said the adoption would significantly ...
Keywords: , , , ,

Fighting Mosquito With GMO Mosquito: The Battle Brewing in the Florida Keys

S. MacLaughlin,  NBC 6 South Florida,  2020.
Scientists are a few months into an experiment to stop the invasive Aedes aegypti mosquito. Their weapon of choice? A genetically modified mosquito. But some environment advocates question the strategy. This year, the Florida Keys had an outbreak of Dengue fever, which was ...
Keywords: , , , ,

Evading evolution of resistance to gene drives

R. Gomulkiewicz, M. L. Thies and J. J. Bull,  bioRxiv,  2020.08.27.270611. 2020.
Our analyses suggest that among gene drives that cause moderate suppression, toxin-antidote systems are less apt to select for resistance than homing drives. Single drives of this type would achieve only partial population suppression, but multiple drives (perhaps delivered ...
Keywords: , , , ,

Florida will release 750 million genetically modified mosquitoes

S. McGlaun,  Slash Gear,  2020.
Local officials in Florida have announced that they have approved 750 million genetically modified mosquitoes to be released into the environment to reduce local populations of the bloodsucking creatures. The goal of releasing genetically modified mosquitoes is to help reduce the ...
Keywords: , , , ,

Is Gene Editing the Answer to Eradicating Malaria in Africa?

Staff,  ASH Clinical News,  2020.
Researchers are looking at a new technique to eradicate malaria: Engineering mosquitoes with a “gene drive” – a gene that when inserted into mosquitoes (or other organisms) will be passed on to nearly 100% of the offspring in the next generation, rather than just half the ...
Keywords: , , , ,

Engineered Gene Drives: State of Research Webinar Series by The GeneConvene Global Collaborative September-October 2020

David O'Brochta and Hector Quemada,  GeneConvene Global Collaborative,  2020.
A series of technical webinars on engineered gene drive technology research and development given by leading researchers in the field.
Keywords: , , , ,

Viral gene drive in herpesviruses

M. Walter and E. Verdin,  Nature Communications,  11:4884. 2020.
Here, we report on a gene drive system that allows the spread of an engineered trait in populations of DNA viruses and, in particular, herpesviruses.
Keywords: , , , ,

You should be excited that scientists are releasing 750 million genetically modified mosquitoes this year

L. Westreich,  Massive Science,  2020.